• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1988 年度 実績報告書

偏微分方程式の解の特異性の位数の伝播についての研究

研究課題

研究課題/領域番号 63540115
研究機関京都大学

研究代表者

宮武 貞夫  京都大学, 理学部, 講師 (10025447)

研究分担者 平井 武  京都大学, 理学部, 教授 (70025310)
楠 幸夫  京都大学, 理学部, 教授 (90025221)
池部 晃生  京都大学, 理学部, 教授 (00025280)
大鍛治 隆司  京都大学, 理学部, 助手 (20160426)
松本 和一郎  京都大学, 理学部, 助手 (40093314)
キーワードリカッチ方程式 / 特異性の位数 / フーリエ積分作用素 / 正準変換
研究概要

q(x)が複素数値函数の場合に於て、Riccati equation w′=q(x)-w^2について解の挙動を調べた。考えるのはq(x)が負の値をとらない場合である。Re√<q(x)>>0とする時、q(x)の対数微分が、Re√<q(x)>に比べてある程度小さい場合には、x〓〔0,∞〕全体で-√<q(x)>に近い解が存在することを示している。これを定量的に定理の形で表わした。応用として(〓^2_x-a(x)〓^2_t)u=0,u(0,t)=g(t)の解について、x>0の方へのsingularityのorderの伝播及びsupportの伝播を論じている。第二の論文では、新たにsingularityのorderの超曲所的な性質について論じている。それは、singularityのorderは局所化する擬微分作用素の台にのみ依存して定まることを定理としてまとめた。この定理を応用すると、Fourier積分作用素によりsingularityのorderが、どの様に移っていくかを示すことが出来る。即ちuの(y,η)におけるsingularityのorder(OS)が、P_φuの(x,ξ)における、singularityのorderに及ぼす影響は次式で与えられる。
ここで、mはsymbol Pの次数であり、(y,η)→(x,ξ)はφによる正準変換による対応である。

  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] Sadao MIYATAKE: Journal of Mathematics of Kyoto University. 28. 13-36 (1988)

  • [文献書誌] Sadao MIYATAKE: Journal of Mathematics of Kyoto University. 29. (1989)

  • [文献書誌] Takashi OKAJI: J.Math.Kyoto Univ.28ー2. 311-322 (1988)

  • [文献書誌] Takashi OKAJI: J.Math.Kyoto Univ.28ー2. 323-334 (1988)

  • [文献書誌] Yukio KUSUNOKI: Holomorphic Functions and Moduli. 1. 209-213 (1988)

  • [文献書誌] Takeshi HIRAI: J.Math.Kyoto Univ.28. 695-749 (1988)

URL: 

公開日: 1990-03-20   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi