• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実績報告書

金属錯体の非対称性に基づく二次元磁性 第一原理構造予測で材料探索

公募研究

研究領域配位アシンメトリー:非対称配位圏設計と異方集積化が拓く新物質科学
研究課題/領域番号 19H04574
研究機関京都大学

研究代表者

Packwood Daniel  京都大学, 高等研究院, 講師 (40640884)

研究期間 (年度) 2019-04-01 – 2021-03-31
キーワード分子薄膜 / 材料探索・バーチャルスクリーニング / 第一原理計算 / 二次元磁気性 / 非対称金属錯体 / ベイズ機械学習
研究実績の概要

This project aims at a computational method to simulate metal complex self-assembly on metal substrates. Such simulations will allow us to study 2D magnetic ordering in molecular layers.

This computational method requires three components: (1) an inter-molecular interaction potential, (2) a molecule-substrate interaction potential, and (3) a method for optimising the monolayer structure using these potentials.

For (1), we constructed a large database of metal complex interactions from first-principles calculations and built an interaction potential using Bayesian machine learning. The accuracy of this method is reasonable, but must be improved for making real predictions. Data for (2) has been collected, but the potential remains in-progress. For (3), a Monte Carlo algorithm has been created

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The research plan is proceeding as scheduled.

今後の研究の推進方策

First half of FY2020:
(1) We aim to improve the accuracy of the inter-molecular interaction potential by improving how the training data are encoded in the machine learning algorithm. (2) We will also aim for an accurate surface-molecule interaction potential by judicious encoding of the training data.

Second half of FY2020:
We will perform self-assembly simulations using the improved potentials and the Monte Carlo algorithm, first for the case of symmetric metal complexes, and then for the case of asymmetric metal complexes. Whenever possible, literature data will be used to confirm the accuracy. After such predictions are made, we will perform first-principles calculations to determine the magnetic ordering in the monolayer, and predict ways in which magnetic ordering might be controlled.

  • 研究成果

    (4件)

すべて 2020 2019 その他

すべて 雑誌論文 (1件) 学会発表 (2件) (うち招待講演 2件) 備考 (1件)

  • [雑誌論文] Kernelized machine learning for a molecular self-assembly model2019

    • 著者名/発表者名
      Daniel M. Packwood
    • 雑誌名

      Bulletin of the Japan Society for Coordination Chemistry

      巻: 74 ページ: 62

  • [学会発表] Structure prediction and control for functional surface materials2020

    • 著者名/発表者名
      Daniel M. Packwood
    • 学会等名
      Applied Math for Energy: Future Directions (workshop at I2CNER, Kyushu University)
    • 招待講演
  • [学会発表] 表面上の分子集合体のための機械学習2020

    • 著者名/発表者名
      Daniel M. Packwood
    • 学会等名
      近畿化学協会コンピューター化学部会 第107回例会
    • 招待講演
  • [備考] Research group website

    • URL

      http://www.packwood.icems.kyoto-u.ac.jp/

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi