• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

AM組織制御のための高性能phase-field計算法の構築

公募研究

研究領域超温度場材料創成学:巨大ポテンシャル勾配による原子配列制御が拓くネオ3Dプリント
研究課題/領域番号 22H05282
研究機関京都工芸繊維大学

研究代表者

高木 知弘  京都工芸繊維大学, 機械工学系, 教授 (50294260)

研究期間 (年度) 2022-06-16 – 2024-03-31
キーワードフェーズフィールド法 / 高性能計算 / 材料組織 / 積層造形
研究実績の概要

粉末床溶融結合法(powder bed fusion: PBF)を対象とし,粉末床形成,粉末溶融,粉末運動,溶融プール内液相流動,多結晶凝固,凝固後の粒成長を一貫して表現可能な高精度組織予測を可能とするmulti-phase-field (MPF)モデルと,GPUスパコンによる高性能PF計算法を構築することを目的として研究を進めた.ただし,デンドライトやセルなどの凝固形態は取り扱わず結晶粒スケールを対象とした.
異なる2つのスケールからのアプローチを行った.一つは,複数層・複数トラックのレーザー走査における組織予測を可能とするMPFシミュレーション・フレームワークの構築(MPF1).もう一つは,溶融プール内の液相流動を考慮した組織予測を可能とするMPFシミュレーション・フレームワークの構築である(MPF2).
MPF1においては,一定速度で移動する点熱源による温度の時空間分布の理論式であるRosenthalの式を,double-obstacleポテンシャルを用いるMPFモデルに組み込むことで,溶融プールの形態と移動,固相溶融と多結晶凝固を再現した.また,粉末床を多結晶層でモデリングし,さらに複数GPU並列化により大規模計算を可能とすることで,複数層・複数トラックのレーザー走査による材料組織予測を可能とした.さらに,316L合金の双方向走査を対象としたシミュレーションを実行し,特徴的な曲線を有する組織形態を再現した.
MPF2においては,多結晶粒成長を再現可能なMPFモデルと,固気液混相流モデルを再現可能なMPFモデルを連成させ,溶融プール内のマランゴニ対流,反跳力と液相蒸発によるキーホール形成,固相溶融,多結晶凝固,固体内の粒成長を再現可能な2次元MPFモデルとそのGPUコードを作成した.また,シミュレーションを行うことで,各現象が定性的に表現可能であることを確認した.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

MPF1粗視化モデル研究の進捗は良好であり,Materials Transaction 特集号(Special Issue: Creation of Materials by Superthermal Field)に学術論文1編が採択された.Chadwickら[Acta Mater. 211 (2021) 116862]のモデルを基本としているが,複数GPU実装することで大規模計算が可能となり,複数層・複数トラックに拡張し様々なスキャンストラテジーに対する組織予測の可能性を見出したことが大きな成果である.
MPF2高性能モデル研究に関しては,概ね一通りの現象を再現可能としたが,計算コストが高いことが一番の課題であり,2次元問題の評価にとどまっている.また,材料組織を予測するMPFと,混相流を予測するMPFのデータ変換が不安定になることがあり,粉末床を用いた計算は2022年度末時点では達成できていない.

今後の研究の推進方策

MPF1粗視化モデルとMPF2高性能モデルの2つのスケールからの組織予測フレームワークの構築を継続する.いずれも計算コストが高いことが共通の課題である.
MPF1粗視化モデル研究に関しては,溶融プール近傍のみを計算対象とする手法の構築を行う.これによって任意のスキャンストラテジー,任意の層・トラック数への適用が可能となり,スキャンストラテジーによる組織制御に寄与する.また,粉末床を表現する多結晶層モデル,等軸晶の再現を可能とする核生成モデル,粒間の競合成長を高精度化するモデルの検討を行い,材料組織予測の高精度化を達成する.
MPF2高性能モデル研究に関しては,昨年度から構築している計算手法を一通り作成し,その性能評価を通して問題点を洗い出す.問題点が明らかになった時点で,計算を高速化するために格子ボルツマン法の導入を行う.ただし,現在用いているナビエストークス方程式を直接解く方法をそのまま更新することができないため,固気液混相流問題を再度見直す.また,液相の蒸発とレイトレーシングの導入にも課題があり,これらのモデリングを行う.
今年度が研究期間の最終年度となるため,最後に研究を総括し,今後の研究方針をたてる.

  • 研究成果

    (3件)

すべて 2023 2022

すべて 学会発表 (3件) (うち国際学会 1件)

  • [学会発表] Development of a Multi-phase-field Framework for Powder Bed Fusion Additive Manufacturing2023

    • 著者名/発表者名
      T. Takaki, S. Sakane
    • 学会等名
      TMS 2023 Annual Meeting & Exhibition (TMS2023)
    • 国際学会
  • [学会発表] 金属積層造形における複数層・複数トラック走査を可能とするmulti-phase-field法の構築と組織予測2023

    • 著者名/発表者名
      高橋 侑希, 坂根 槙治, 高木 知弘
    • 学会等名
      日本金属学会2023年春期(172回)講演大会
  • [学会発表] Multi-phase-field法を用いた金属粉末積層造形モデリングの検討2022

    • 著者名/発表者名
      高木 知弘, 坂根 慎治
    • 学会等名
      日本機械学会 第35回計算力学講演会(CMD2022)

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi