• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Statistical genetics and big data contribute to novel cancer drug discovery

Planned Research

  • PDF
Project AreaConquering cancer through neo-dimensional systems understanding
Project/Area Number 15H05911
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionOsaka University (2016-2019)
Tokyo Medical and Dental University (2015)

Principal Investigator

Okada Yukinori  大阪大学, 医学系研究科, 教授 (70727411)

Co-Investigator(Kenkyū-buntansha) 鎌谷 洋一郎  京都大学, 医学研究科, 准教授 (00720880)
浦山 ケビン  国立研究開発法人国立成育医療研究センター, 社会医学研究部, 部長 (60726850)
川上 英良  国立研究開発法人理化学研究所, 科技ハブ産連本部, ユニットリーダー (30725338)
藤本 明洋  京都大学, 医学研究科, 特定准教授 (30525853)
Project Period (FY) 2015-06-29 – 2020-03-31
Keywords遺伝統計学 / HLA imputation法 / ゲノム創薬
Outline of Final Research Achievements

By integrating large-scale human disease genome data with a variety of tissue-specific human epigenome resources, one can obtain substantial information on disease biology, personalized medicine, and genome drug discovery. In this project, we expanded the field of statistical genetics in Japan into a wide range of bioinformatics analyses. High-resolution mapping of the human leukocyte antigen (HLA) gene alleles using next-generation sequencing technologies elucidated detailed distributions of alleles of both classical and non-classical HLA genes in the Japanese population. Trans-layer omics analysis integrating human disease genomes and tissue-specific epigenome data highlighted hidden tissue-specificity in human diseases (e.g., contribution of regulatory T cells and central nerve system cells on Graves’ disease and obesity, respectively). Our project contributed to development of young Japanese researchers in the field of statistical genetics.

Free Research Field

遺伝統計学

Academic Significance and Societal Importance of the Research Achievements

遺伝統計学の活用により、大規模ヒト疾患ゲノム情報の一次的なデータ処理に留まらず、疾患病態解明やゲノム創薬、個別化医療への貢献が可能になることを示すことができた。これは、遺伝統計学という学問分野の可能性を広げた成果を考えられた。「遺伝統計学・夏の学校@大阪大学」の開催と関連書籍の出版は、同分野の若手人材育成に資すると考えられた。当研究課題に参画した研究者(代表者・分担者含め計5名)が研究実施期間中に全員研究室主催者として独立を果たした点も、人材育成に貢献するものである。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi