2021 Fiscal Year Final Research Report
Fabrication of Soft Photonic Crystals for Novel Functions
Project Area | Soft Crystals: Science and Photofunctions of Easy-Responsive Systems with Felxibility and Higher-Ordering |
Project/Area Number |
17H06376
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Hokkaido University |
Principal Investigator |
Gong Jian Ping 北海道大学, 先端生命科学研究院, 教授 (20250417)
|
Co-Investigator(Kenkyū-buntansha) |
黒川 孝幸 北海道大学, 先端生命科学研究院, 教授 (40451439)
野々山 貴行 北海道大学, 先端生命科学研究院, 准教授 (50709251)
|
Project Period (FY) |
2017-06-30 – 2022-03-31
|
Keywords | ゲル / ソフトクリスタル / フォトニッククリスタル / 構造色 / 犠牲結合 / 異方性 |
Outline of Final Research Achievements |
Hydrogels with lamellar structure consisting of stacking of lipid bilayer and neutral gel layer were developed from one-pot polymerization from mixture of polymerizable lipid monomer and neutral monomer. By applying shear flow to the precursor monomer solution above a critical shear rate, the orientation of lamellar can be uniaxially aligned both in sheet or in multi-cylindrical shape. These gels could be classified as soft crystal because they possess crystal-like photonic structure while maintain soft and flexible feature. These gels show unique properties such as structural color, anisotropic swelling and diffusion, anisotropic mechanical properties. The structure color of sheet-shape gel is angle-dependent while that of multi-cylindrical gel is angle-independent. Moreover, the bilayers serve as reversible sacrificial structure to tough the material. Such multi-functional hydrogels have promising applications.
|
Free Research Field |
高分子化学、高分子物理、ソフトマター、ゲル
|
Academic Significance and Societal Importance of the Research Achievements |
ハイドロゲル材料は、その含水構造の類似性から生体組織に近い物質である一方、力学物性や機能に乏しく、生体組織のような強靭性、高機能、異方性を有しない。ラメラ構造を有する本ゲルは、細胞膜様の配向した脂質二分子膜を大面積かつ数千層にスタックした構造により、高い靭性を獲得しただけでなく、美しい構造色、異方的な変形、膨潤・収縮、物質拡散能をも示した。このようなラメラ構造による強靭化原理や異方性機序の解明により、真に生体組織に類似するソフトマテリアルを創成することに繋がり、学術的及び社会的意義が高いと言える。
|