• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Modeling-based investigation of mechanism of kink deformation and strengthening

Planned Research

  • PDF
Project AreaMaterials science on mille-feullie structure -Developement of next-generation structural materials guided by a new strengthen principle-
Project/Area Number 18H05480
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionNagoya University (2019-2022)
Osaka University (2018)

Principal Investigator

Kimizuka Hajime  名古屋大学, 工学研究科, 教授 (60467511)

Co-Investigator(Kenkyū-buntansha) 板倉 充洋  国立研究開発法人日本原子力研究開発機構, システム計算科学センター, 研究主幹 (90370353)
只野 裕一  佐賀大学, 理工学部, 教授 (00346818)
Project Period (FY) 2018-06-29 – 2023-03-31
Keywords硬質・軟質層状構造 / キンク形成・強化 / 原子論的解析 / 大規模第一原理計算 / 高次勾配結晶塑性論 / 結晶塑性有限要素解析
Outline of Final Research Achievements

In order to understand the strengthening principles of materials with mille-feuille structures, it is essential to elucidate the microscopic aspects of kink formation in mille-feuille materials and the requirements for hard and soft layered structures for strengthening by kink formation. In this study, kink formation processes in mille-feuille structures of metals, ceramics, and polymers were investigated by computational mechanics modeling based on electronic, atomic, and crystal plasticity theories. As a result, details of the deformation processes of hard and soft layered structures and the kink formation and strengthening mechanisms specific to mille-feuille structures were clarified.

Free Research Field

計算材料科学

Academic Significance and Societal Importance of the Research Achievements

ミルフィーユ構造の強化原理の解明に向けて,未だ詳細が明らかにされていないキンク形成・強化のメカニズムを明らかにすることは重要な課題であり,当該構造を有する新規材料創製への展開を図る上で不可欠である.本計画研究では,大規模電子状態計算から種々の原子レベルシミュレーション,幾何学的に必要な転位や回位の密度を導入した高次の結晶塑性論など,スケールをまたがる新しい計算力学手法を取り入れて,多様なミルフィーユ構造のミクロ~メゾスケールにおけるキンク形成の微視的支配因子およびメゾ~マクロスケールにおけるキンク形成・強化の様態を解明した.これは当該材料において優れた力学特性を制御する上での基礎的知見となる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi