• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Precise analysis of hydrogen function with advanced hydrogen measurements

Planned Research

  • PDF
Project AreaHYDROGENOMICS: Creation of Innovative Materials, Devices, and Reaction Processes using Higher-Order Hydrogen Functions
Project/Area Number 18H05518
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionThe University of Tokyo

Principal Investigator

Fukutani Katsuyuki  東京大学, 生産技術研究所, 教授 (10228900)

Co-Investigator(Kenkyū-buntansha) 町田 晃彦  国立研究開発法人量子科学技術研究開発機構, 関西光科学研究所 放射光科学研究センター, 上席研究員 (70354983)
大友 季哉  大学共同利用機関法人高エネルギー加速器研究機構, 物質構造科学研究所, 教授 (90270397)
Project Period (FY) 2018-06-29 – 2023-03-31
Keywords核反応法 / 中性子散乱 / コヒーレントブラッグ回折イメージング / 水素吸蔵 / 拡散 / 歪
Outline of Final Research Achievements

We have developed advanced methods of hydrogen measurements in materials, and analyzed the structure of hydrides, hydrogen diffusion and reactions. By combining the resonance nuclear reaction with a channeling technique, we have realized the identification of the lattice site of hydrogen. With in-situ measurements, we have succeeded in observing hydrogen diffusion and hydrogen-induced metal-insulator transition. By developing the operando neutron scattering apparatus, we have clarified the deterioration mechanism of hydrogen storage materials. We have developed a Bragg coherent X-ray diffraction imaging method, with which the shape and structure of a single nano-particle and the strain distribution in the particle were precisely measured. By applying these advanced techniques, we have made significant contributions to the construction of the hydrogen science “Hydrogenomics”.

Free Research Field

表面界面物性

Academic Significance and Societal Importance of the Research Achievements

水素は種々の材料において高密度に凝集したり高速に移動したりする.これにより,水素化物では超伝導やイオン伝導など他の元素では実現できない機能発現が期待される.これら水素新機能は,カーボンニュートラルのための新たなエネルギーデバイス創成や,環境問題解決のための新たな反応プロセス創出に貢献する.また水素は宇宙空間や生体の主要な構成元素であり,宇宙化学や生体反応解明にも貢献できる.本研究で開発された先端水素計測法は,水素材料機能発現の原理を解き明かし,さらに高機能を有する革新的材料創製の指導原理を導くことが期待される.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi