2023 Fiscal Year Final Research Report
Development of solid oxide electrolyzer utilizing hydrogen spilover
Project Area | Surface hydrogen engineering: Utilization of spillover hydrogen and verification of quantum tunneling effect |
Project/Area Number |
21H05100
|
Research Category |
Grant-in-Aid for Transformative Research Areas (B)
|
Allocation Type | Single-year Grants |
Review Section |
Transformative Research Areas, Section (II)
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Project Period (FY) |
2021-08-23 – 2024-03-31
|
Keywords | 電気化学アンモニア合成 / プロトン固体酸化物電解セル |
Outline of Final Research Achievements |
In this study, VN0.9, a well-known rock-salt type metal nitride, exhibits hydrogen grain boundary diffusivity, which can be interpreted as a 'hydrogen spillover' in the internal surface of the polycrystaline bodies. VN0.9 was found to efficienct cathode materials for electrochemical ammonia synthesis by H2O-N2 coelectrolytic H+-SOC. Analysis of electrochemical hydrogen pumping revealed that the VN0.9 cathode effectively suppress hydrogen evolution reaction at the surface, while having hydrogen permeability due to hydrogen ion grain boundary diffusion. Therefore, a faradaic efficiency of 12% for H2O-N2 co-electrolytic ammonia synthesis was achieved using a cell with a Ru-loaded VN0.9 cathode.
|
Free Research Field |
エネルギー化学
|
Academic Significance and Societal Importance of the Research Achievements |
現在のハーバーボッシュ法によ依るアンモニア合成は、化石燃料由来の水素を大量に消費するため、低炭素社技術への転換が求められている。固体電解セルを使ったH2O-N2共電解による電気化学的アンモニア合成は、水を水素源として窒素還元を行うため、次世代プロセスとして期待されている。一方位でこれまでの共電解のファラデー効率は0.1%程度と、非常に低いものであった。本研究成果はこの生成効率は二けた上昇させるものであり、化学産業の低炭素化に大きく貢献するものである。
|