• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Exploring the Limits of Computation in the Scenario of Constrained Work Space

Planned Research

  • PDF
Project AreaA multifaceted approach toward understanding the limitations of computation
Project/Area Number 24106004
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionJapan Advanced Institute of Science and Technology

Principal Investigator

Asano Tetsuo  北陸先端科学技術大学院大学, 学長 (90113133)

Co-Investigator(Kenkyū-buntansha) 上原 隆平  北陸先端科学技術大学院大学, 情報科学研究科, 教授 (00256471)
垂井 淳  電気通信大学, 情報理工学(系)研究科, 准教授 (00260539)
小野 廣隆  九州大学, 経済学研究科(研究院), 准教授 (00346826)
清見 礼  横浜市立大学, 総合科学部, 准教授 (30447685)
大舘 陽太  北陸先端科学技術大学院大学, 情報科学研究科, 助教 (80610196)
Research Collaborator Guenter Rote  Freie Universität Berlin, Institut für Informatik, Professor
Wolfgang Mulzer  Freie Universität Berlin, Institut für Informatik, Professor
Ovidiu Daescu  University of Texas at Dallas, Department of Computer Science, Professor
Project Period (FY) 2012-06-28 – 2017-03-31
Keywordsアルゴリズム / 計算量 / 計算幾何学 / グラフアルゴリズム / 作業領域
Outline of Final Research Achievements

In this research we have developed powerful techniques for analysis toward establishment of nontrivial lower and upper bounds on the constrained work space. The most fundamental problem is to seek for each entry in a given array of real numbers one of nearest greater values. Using linear size of work space we can design a linear time algorithm for solving the problem. Our problem is whether we can solve the problem in an efficient way using less work space. In this research we showed that we have an efficient algorithm using only constant amount of work space. We also had results on time and space tradeoffs on the problem. We obtained other many results in basic problems in computational geometry and graph theory.

Free Research Field

計算幾何学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi