2018 Fiscal Year Final Research Report
Molecular theories for self-assembly and order formation
Project Area | Dynamical ordering of biomolecular systems for creation of integrated functions |
Project/Area Number |
25102002
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Kyoto University |
Principal Investigator |
SATO Hirofumi 京都大学, 工学研究科, 教授 (70290905)
|
Co-Investigator(Kenkyū-buntansha) |
山本 武志 京都大学, 理学研究科, 助教 (30397583)
|
Project Period (FY) |
2013-06-28 – 2018-03-31
|
Keywords | 自己集合 / マスター方程式 / 液体の積分方程式理論 / 粗視化モデル / エネルギーランドスケープ / 量子化学 |
Outline of Final Research Achievements |
Self-assembly is a process in which a certain number of molecules assemble to spontaneously form an ordered structure. In this project, we aimed to clarify the mechanism and dynamics of the process. As a result, (1) we have developed fundamental methods to understand self-assembly process in mind. (2) Nanocube is a self-assembling system, in which six gear-like amphiphilic molecules form an ordered cubic structure. We have studied the system using all-atom model and coarse-grained model to understand the assembling mechanism. (3) The time evolution was analyzed for the formation process of octahedron-shaped coordination capsule consisting of Pd (II) ions and eight panel-shaped ligands, by utilizing master equation. Detail of the formation process including the rate-determining step was investigated using quantum chemical effective Hamiltonian. Moreover, based on these, (4) The dynamics and molecular characteristics of various self-assembly processes were clarified.
|
Free Research Field |
理論化学
|
Academic Significance and Societal Importance of the Research Achievements |
自己集合過程のメカニズムとダイナミクスの理解は、多くの自然現象にも通底する普遍性の高い課題である。しかし実験的にも未解明であり、既存の理論化学の方法でも十分答えることができなかった。本課題では溶液中での自己集合過程の分子シミュレーションを世界で初めて成功させて、原子レベルで溶媒分子の役割を明らかにした。また対象を粗視化することで幅広い時間・空間スケールにおける分子や分子集団の挙動を特徴付け、実際の観測結果と結びつけながら現象を俯瞰するためのフレームワークを構築した。
|