• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Imaging Super-massive Black Holes with Sparse Modeling

Planned Research

  • PDF
Project AreaInitiative for High-Dimensional Data-Driven Science through Deepening of Sparse Modeling
Project/Area Number 25120007
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionNational Astronomical Observatory of Japan

Principal Investigator

Honma Mareki  国立天文台, 水沢VLBI観測所, 教授 (20332166)

Co-Investigator(Kenkyū-buntansha) 加藤 太一  京都大学, 理学研究科, 助教 (20283591)
植村 誠  広島大学, 宇宙科学センター, 准教授 (50403514)
Co-Investigator(Renkei-kenkyūsha) NOGAMI Daisaku  京都大学, 理学研究科, 准教授 (20332728)
Research Collaborator HADA Kazuhiro  国立天文台, 水沢VLBI観測所, 助教 (60724458)
OSHIMA Tomohito  西はりま天文台, 研究員
SASADA Mahito  広島大学, 宇宙科学センター, 特任助教
TAZAKI Fumie  国立天文台, 水沢VLBI観測所, 特任研究員 (10800609)
AKIYAMA Kazunori  マサチューセッツ工科大, ヘイスタック観測所, Jansky Felow
Project Period (FY) 2013-06-28 – 2018-03-31
Keywordsブラックホール / 電波天文学 / 電波干渉計 / イメージング / 疎性モデリング
Outline of Final Research Achievements

In order to obtain resolved images of super-massive black hole shadows, we developed super-resolution imaging techniques for radio interferometry based on sparse modeling. We applied newly-developed methods to existing observational data and confirmed its performance, and resolved the jet root structure at the nearest location from the super-massive black hole of M87. We realized the first observations with the international mm-VLBI network in April 2017. By applying our methods to the data, we successfully obtained the angular resolution high enough to resolve the black holes, and showed that imaging of black hole shadow is achievable. We also extended applications of sparse modeling to various types of astronomy data analyses, and demonstrated its effectiveness in general astronomy.

Free Research Field

電波天文学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi