• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1989 Fiscal Year Final Research Report Summary

Noncommutative Analysis

Research Project

Project/Area Number 01044073
Research Category

Grant-in-Aid for Overseas Scientific Survey.

Allocation TypeSingle-year Grants
Research InstitutionResearch Institute for Mathematical Sciences, Kyoto University

Principal Investigator

ARAKI Huzihiro  Professor, Research Institute for Mathematical Sciences, Kyoto University, 数理解析研究所, 教授 (20027361)

Co-Investigator(Kenkyū-buntansha) JIMBO Michio  Assoc. Prof., Faculty of Science, Kyoto University, 理学部, 助教授 (80109082)
MIWA Tetsuji  Assoc. Prof., Research Institute for Mathematical Sciences, Kyoto University, 数理解析研究所, 助教授 (10027386)
MIZOHATA Sigeru  Professor, Osaka Electro-Communication University, 教授 (20025216)
KASHIWARA Masaki  Professor, Research Institute for Mathematical Sciences, Kyoto University, 数理解析研究所, 教授 (60027381)
Project Period (FY) 1989
KeywordsNon-commutative analysis / Master symmetries / Q-analogue / Colored oriented graph / Tensor product / Kazhdan-Lusztig conjecture / Flag variety / Kac-Moody Lie algebra
Research Abstract

An inequality of Lieb and Thirring about the trace of product of powers of two non-commutative operators is generalized to a general power parameter values by H. Araki to provide a tool for non-commutative analysis. Master symmetries of one-dimensional XY-model in statistical mechanics of spin lattice systems are mathematically analyzed and their basic properties are proved by using operator algebraic methods by H. Araki as a typical example of a non-commutative analysis. A canonical basis for an irreducible representations of the q-analogue of a universal enveloping algebra for A_n, B_n, C_n and D_n cases is found and shown to have a structure of a colored oriented graph, with application to a combinatorial description of the decomposition of the tensor product into irreducible components, by M. Kashiwara. The generalization of Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras is proved by H. Kashiwara by using an infinite dimensional flag variety.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 荒木不二洋: "On an inequality of Lieb and Thirring" Letters in Mathematical Physics. 19. 167-170 (1990)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 荒木不二洋: "Master Symmetries of the XY Model" Communications in Mathematical Physics. (1990)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 柏原正樹: "Crysterizing the q-analogue of universal enveloping algebras" Communications in Mathematical Physics. (1990)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 柏原正樹: "Kazhdan-Lustzig conjecture for symmetrizable Kac-Moody Lie algebra" A Grothendieck 60才記念論文集(Academic Press). (1990)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Huzihiro ARAKI: "On an inequality of Lieb and Thirring" Letters in Mathematical Physics. 19. 167-170 (1990)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Huzihiro ARAKI: "Master Symmetries of the XY-model" Communications in Mathematical Physics. (1990)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masaki KASHIWARA: "Crystalizing the q-analogue of universal enveloping algebras" Communications in Mathematical Physics. (1990)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masaki KASHIWARA: "Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebra" The volumes of the sixtieth birthday of A. Grothendieck. (1990)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1993-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi