• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1991 Fiscal Year Final Research Report Summary

Metrics on complex manifold

Research Project

Project/Area Number 01540036
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionNagoya Institute of Technology

Principal Investigator

KATO Akikuni  Nagoya Institute of Technology Department of Mathematics Assistant Professor, 工学部, 助教授 (20024226)

Co-Investigator(Kenkyū-buntansha) YAMAZATO Makoto  Nagoya Institute of Technology Department of Mathematics Assistant Professor, 工学部, 助教授 (00015900)
KURATA Masahiro  Nagoya Institute of Technology Department of Mathematics Assistant Professor, 工学部, 助教授 (10002164)
HASEGAWA Yoshihei  Nagoya Institute of Technology Department of Mathematics Assistant Professor, 工学部, 助教授 (10022675)
TAKEMOTO Fumio  Nagoya Institute of Technology Department of Mathematics Assistant Professor, 工学部, 助教授 (50022645)
MATSUURA Shozo  Nagoya Institute of Technology Department of Mathematics Professor, 工学部, 教授 (20024151)
Project Period (FY) 1989 – 1991
KeywordsGeneralized length / L-torsion / L-coprimary decomposition / Measure-preserving diffeomorphism / Hitting time distribution / Generalized diffusion process
Research Abstract

Our results can be divided into three parts ; (I) concerning commutative algebra, (II) concerning differential topology, and (III) concerning probability theory.
(I) A. Kato considers modules over a commutative ring R, then he studies modules modulo submodules of a generalized length zero. Fixing a generalized length L, the concepts of L-torsion, L-coannihilator, L-nilpotent, and L-coprimary module can be considered. Especially he gives a L-coprimary decomposition of a module modulo a submodule whose L equals zero.
(II) M. Kurata proves the following ; for measure-preserving diffeomorphisms of closed manifolds, there are families of locally invariant manifolds corresponding to Lyapunov exponents less than, where being non-negative.
(III) Y. Hasegawa develops a potential theory on a certain hypersurface S of infinite dimensional real sequences space E. M. Yamazato characterizes the class of hitting time distributions of single points of generalized diffusion processes.

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] Akikuni Kato: "K-theoretic coprimary decomposition of a module over a commutative ring"

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshihei Hasegawa: "Brownian motions on infinite dimensional guadric bypersurfaces" Probability theoryand related fields. 80. 347-364 (1989)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Makoto Yamazato: "Hitting time distributions of single points for 1-dimensional generalized diffusion process" Nagoya Math.J.119. 143-172 (1990)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masahiro Kurata: "Families of locally invariant manifolds for measure-preserving diffcomarplisms"

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yamazato: "On strongly unimodal infinitely invisible distributions of class CME"

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Yamazato: "Hitting time distributions of single points for 1-dimensional generalized diffusion processes" Nagoya Math, J. 143-172

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1993-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi