• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1992 Fiscal Year Final Research Report Summary

Microlocal Analysis of Differential Equations

Research Project

Project/Area Number 03452007
Research Category

Grant-in-Aid for General Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionUniversity of Tokyo

Principal Investigator

KOMATSU Hikosaburo  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 教授 (40011473)

Co-Investigator(Kenkyū-buntansha) KAWAHIGASHI Yasuyuki  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 助教授 (90214684)
TSUTSUMI Yoshio  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 助教授 (10180027)
KATAOKA Kiyoomi  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 助教授 (60107688)
SUNADA Toshikazu  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 教授 (20022741)
KOTANI Shinichi  Univ.of Tokyo,Dept.of Math.Sciences, 大学院数理科学研究科, 教授 (10025463)
Project Period (FY) 1991 – 1992
KeywordsMicrolocal analysis / Differential equations / Semigroups of operators / Schrodinger operators / Second microlocal analysis / zakharov equations / Classification of subfactors
Research Abstract

There are two ways of microlocal analysis, one by M. Sato et al. employs the theory of several complex variables and the cohomologies with coefficients in sheaves, and the other by L. Hormander et al. multiplication by cut-off functions and Fourier transforms. Komatsu established in between a third method of microlocal analysis employing Poisson integrals and their analytic continuations. This has the advantage of carrying out microlocalanalysis for various classes of generalized functions, including the Gevrey classes, between Sato's hyperfunctions and Schwartz' distributions at the same time.
Komatsu extended, moreover, the theory of Laplace transforms of hyperfunctions to the case where hyperfunctions have values in a Banach space, and applied it in order to extend the Hille-Yosida theory of semigroups of linear operators to the case where semigroups are various classes of generalized functions.
Kotani and Sunada investigated the spectra of Laplace operators and Schrodinger operators acting on the functions on Riemannian manifolds. In particular, Kotani gave a probabilistic proof to an estimate of the supremum of spectra in terms of curvatures. Sunada gave a sufficient condition for the spectrum has the band structure as a property of the C^*-group algebra of the discrete group acting on the manifold.
Kataoka compared and distinguished many theories called the second microlocal analysis, and showed the importance of choozing a suitable theory in applying the second microlocal analysis to differential equations.
Tsutsumi investigated the solvability of the initial value problem for the Zakharov equations describing the strong disturbance of Langmuin waves in plasmas.
Kawahigashi gave rigorous formulations and their proofs to the so-called Ocneanu theory for the classification of subfactors in operator algebras for the first time. On this established foundation there will be fruitful applications of the theory.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] H.Komatsu: "An elementary theory of hyperfunctions and microfunctions" Banach Center Publications. 27. 233-256 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Komatsu: "Operational calculus and semi-groups of operators" Lecture Notes in Mathematics. 1540. 199-220 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sunada: "Group C^*-algebras and the spectrum of a periodic Schrodinger operator on a manifold" Conadian Journal of Mathematics. 44. 180-193 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kataoka & N.Tose: "On microhyperbolic mixed problems" Journal of the Mathematical Society of Tapen. 43. 261-304 (1991)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ozawa & Y.Tsutsumi: "Existence and smoothing cffect of solutions for the Zakharou equations" Publications of RIMS,Kyoto University. 28. 329-361 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawahigashi & M.Takesaki: "Compact abelian group action on injective factors" Journal of Functional Analysis. 105. 112-128 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Komatsu: "An elementary theory of hyperfunctions and microfunctions" Banach Center Publications. 27. 235-256 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Komatsu: "Operational calculus and semi-groups of operators" Lecture Notes in Math.1540. 199-220 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada: "Groups C^*-algebras and the spectrum of a periodic Schrodinger operator on a manifold" Canadian J. of Math.44. 180-193 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kataoka & N.Tose: "On microhyperbolic mixed problems" J. Math. Soc. of Japan. 43. 261-304 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ozawa & Y.Tsutsumi: "Existence and smoothing effect of solutions for the zakharoo equations" Publications of RIMS, Kyoto Univ.28. 329-361 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kawahigashi & M.Takesaki: "Compact abelian group action on injective factors" J. Functional Analysis. 105. 112-128 (1992)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1994-03-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi