• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1993 Fiscal Year Final Research Report Summary

Studies on Group Representations and Related Special Functions

Research Project

Project/Area Number 04640055
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

KATO Shin-ichi  Kyoto University, Faculty of Integrated Human Studies (FIHS), Associate Prof., 総合人間学部, 助教授 (90114438)

Co-Investigator(Kenkyū-buntansha) TAKASAKI Kanehisa  Kyoto Univ.FIHS, Ass.Prof., 総合人間学部, 助教授 (40171433)
SAITO Hiroshi  Kyoto Univ.Grad.School of Human and Enviromental Studies, Prof., 大学院・人間環境学研究科, 教授 (20025464)
MATSUKI Toshihiko  Kyoto Univ.FIHS, Ass.Prof., 総合人間学部, 助教授 (20157283)
NOSHIYAMA Kyo  Kyoto Univ.FIHS, Ass.Prof., 総合人間学部, 助教授 (70183085)
GYOJA Akihiko  Kyoto Univ.FIHS, Ass.Prof., 総合人間学部, 助教授 (50116026)
Project Period (FY) 1992 – 1993
KeywordsAlgebraic gruops / Lie algebras / Hecke algebras / Special functions / Representations / R-matrix / q-analogues
Research Abstract

We studied various kind of special functions associated with aigebraic groups, Lie algebras, symmetric spaces, prehomogeneous spaces, Hecke algebras and so on, form the view point of representation theory. In the course of the research, many interesting results, some of which are related to number theory, or mathematical physics, are obtained.
Kato studied Hecke algebras. First he showed how the "dual" of representations of Hecke algebras are given. Next, he constructed a new kind of R-matrix by using Hecke algebras, defined explicitly a quantum Knizhnik-Zamolodchikov equations, a system of q-difference equations, and showed certain relation between eigenfunctions of Macdonald's difference operators and our KZ-equations. Saito investigated the prehomogeneous vector spaces (PV) consisting of symmetric matrices from number theoretical view point. He determined the zeta function of these PV explicitly, and applied this result to the study of Siegel modular forms. Gyoja studied PV in connection with representations and D-modules. Particulary, he studies the relation between reducibility of generalized Verma modules and b-functions of PV.Matsuki investigated orbital decomposition of symmetric spaces and other similar spaces. This research is important in descriving representations geometrically. Nishiyama studied unitary representations of super Lie algebras, especially super version of the theory of dual pairs. Takasaki studies nonlinear integrable systems which appear in mathematical physics. He considered the symmetry hidden in these systems and investigated the relation between these symmetries and infinite dimensional Lie algebras, etc.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 加藤 信一: "Duality for representations of a Hecke algebra" Proceedings of the American Mathematical Society. 119. 941-946 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加藤 信一: "R-matrix arising from affine Hecke algebras and its application to Macdonald's difference operators" Communications in Mathematical Physics. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 行者 明彦: "Further generalization of generalized Verma modules" Publ.RIMS.Kyoto Univ.29. 349-395 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 西山 享: "Super dual pairs and unitary highest weight modules of orthosymplectic algebras" Advances in Math.103(発表予定). (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 斎藤 裕 (伊吹山 知義): "On zeta functions associated to symmetric matrices and an explicit conjecture on dimensions of Siegel modular forms of geneal degree" Internat.Math.Research Notice:(Duke Math.J.). 67. 161-169 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高崎 金久: "Quasi-classical limit of BKP hierarchy and W-infinity symmetries" Letters in Math.Phys.28. 177-185 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kato, Shin-ichi: "Duality for representations of a Hecke algebra" Proc.Amer.Math.Soc.119. 941-946 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kato, Shin-ichi: "R-matrix arising from affine Hecke algebras and its application to Macdonald's difference operators" Commun.Math.Phys.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Gyoja, Akihiko: "Further generalization of generalized Verma modules" Publ.RIMS, Kyoto Univ.29. 349-395 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nishiyama, Kyo: "Super dual pairs and unitary highest weight modules of orthosymplectic algebras" Adv.in Math.103 (to appear). (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Saito, Hiroshi (Ibukiyama, Tomoyoshi): "On zeta functions associated to symmetric matrices and an explicit conjecture on dimensions of Siegel modular forms of geneal degree" Internat.Math.Research Notice No.8, Duke Math.J.67. 161-167 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takasaki, Kanehisa: "Quasi-classical limit of BKP hierarchy and W-infinity symmetries" Lett.Math.Phys.28. 177-185 (1993)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1995-03-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi