• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1995 Fiscal Year Final Research Report Summary

Convergence Theory for Alexandrov Spaces

Research Project

Project/Area Number 06640155
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

YAMAGUCHI Takao  Kyushu Univ., Graduate School of Math., Professor, 大学院・数理学研究科, 教授 (00182444)

Co-Investigator(Kenkyū-buntansha) SHIOYA Takashi  Kyushu Univ., Graduate School of Math., Associ.Prof., 大学院・数理学研究科, 助教授 (90235507)
TANAKA Shunichi  Kyushu Univ., Graduate School of Math., Professor, 大学院・数理学研究科, 教授 (00028127)
SHIOHAMA Katsuhiro  Kyushu Univ., Graduate School of Math., Professor, 大学院・数理学研究科, 教授 (20016059)
CHOU Kanchi  Kyushu Univ., Graduate School of Math., Associ.Prof., 大学院・数理学研究科, 助教授 (10197634)
SATOU Hiroshi  Kyushu Univ., Graduate School of Math., Professor, 大学院・数理学研究科, 教授 (30037254)
Project Period (FY) 1994 – 1995
KeywordsAlexandrov space / Gromov imariant / Singular space / Hausdorff convergence / singular set / isometry group
Research Abstract

In the case where the singularities of Alexandrov spaces with curvature bounded below are not so big, under convergence of spaces. we were able to construct Lipschitz homeomorphisms between spaces. In particalar, the continuity of volumes of Alexandrov spaces follows from this result. Moreover, we proved that the Hausdorff measure of the singular set of an Alexandrov space is zero, and that one can define a natural Riemannian structure on the regular set. We also proved that the isometry group of an Alexandrov space with curvature bounded below is a lie group, which has some applications to Riemannian geometry. On the other hand, we extended the notion of the Gromov invariant to Alexandrov spaces, and clarified the relation between the curvature, volume and the Gromov invariant. First, making use of the Alexander-Spanier cohomology theory, we proved the existence of the fundamental class [X] of X, and defined the Gromov invariant of X.Next, we proved that the mass of the fundamental class [X] coincides with the volume of X.In the proof of this face, we used geometric measure theory to approximate a chain representing [X] in the mass topology by a Lipschitz chain with nice properties, and developed a cancellation technique which might be considered as a replacement of Stokes' theorem. And we proved that the Gromov invariant of a negatively curved Alexandrov space can be estimated below interms of the upper bound of curvature and the volume. In the case of Alexandrov surfaces, we obtained a sharp estimate for the Gromov invariant with the type of singularities. For Alexandrov spaces with curvature bounded below, we bave an estimate for the Gromov invariant from above in terms of the volume and the lower bound of curvature. Thus it turned out that the appearanceo of singularities of such a space does not affect the Gromov invariant so much. This shows the big difference between the two cases, spaces curved above and spaces curved below.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] T. Yamaguchi: "A convergence theorem in the geometry of Alexandrov spaces" Collection SMF Seminaires et Congres. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Yamaguchi: "Isometry groups of singular spaces" Math. 2. 26. 31-44 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Sato: "Absolute continuity of one-sided random translations" Stochastic Processes and Their Applications. 58. 187-204 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Shiohama: "Lower bound for L^3/_2 curvature norm and its application." J. Geom. Aral.(to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Cho: "Intersection Theory, for twisted cohomologies and Twiseted Rimanns Peviod Relation I" Nagoya Math. J.139. 67-86 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Tanaka: "Hypersets and dynamics of know ledge" Hokkaido Mathematical Journal. 24. 215-230 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Yamaguchi: "A convergence theorem in the geometry of Alexandrov spaces" Collection SMF Seminaires et Congres. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Yamaguchi: "Isometry groups of Singular Spaces." Math.2. 26. 31-44 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Sato: "Absolute continuity of one-sided random translations" Stochastic Processes and Their Applications. 58. 187-204 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.cho: "Intersection Theory, for twisted cohomologies and Twisted Rimanns Period Relation I." Nagoya Math, J.139. 67-86 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shiohama: "Lower pound for Ln/2 curvature norm and its application" J.Geom, Aral. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Tanaka: "Hypersets and dynamics of Knowledge" Hokkaido Mathematioa Journal. 24. 215-230 (1995)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1997-03-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi