• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1995 Fiscal Year Final Research Report Summary

Theory of Operator Algebras and Applications to Noncommutative Topological Spaces

Research Project

Project/Area Number 06640281
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKansai University

Principal Investigator

KUSUDA Masaharu  Kansai University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (80195437)

Co-Investigator(Kenkyū-buntansha) MAEDA Toru  Kansai Univ., Fac.of Eng., Associate Professor, 工学部, 助教授 (20199623)
HIRASHIMA Yasumasa  Kansai Univ., Fac.of Eng., Associate Professor, 工学部, 助教授 (80047399)
YAMAMOTO Moboru  Kansai Univ., Fac.of Eng., Professor, 工学部, 教授 (80029628)
KURISU Tadashi  Kansai Univ., Fac.of Eng., Professor, 工学部, 教授 (00029159)
ISII Keiichi  Kansai Univ., Fac.of Eng., Professor, 工学部, 教授 (80029420)
Project Period (FY) 1994 – 1995
KeywordsC^<**>-algebra / Von Neumann algebra / State / Factor state / Spectrum / Dual C^<**>-algebra
Research Abstract

In general, a positive linear functional of norm 1, on a C^<**>-subalgebra, called a state can extend to a state on the whole C^<**>-algebra. The most important theme on extensions of states is extensions of factor ststes. In this research, we have obtained the theorem that every factor state on a separable abelian C^<**>-subalgebra B of a von Neumann algebra M extends uniquely to a pure state of M if and only if B is generated by minimal projections in M.Thus we can clarify the structure of separable abelian C^<**>-subalgebras, of a von Neumann algebra, on which every factor state uniquely extends to a pure state on the von Neumann algebra.
Now let A be a C^<**>-algebra and let A^^<^> be the spectrum of A,i.e., equvalence classes of nonzero irreducible representations of A.Then A^^<^> is a topological space equipped with the Jacobson topology. The reason of importance of A^^<^> in the theory of C^<**>-algebras is why A^^<^>is a rather large space and contains a lot of imformation on the structure of A and why we can see the structure of A through the topology of A^^<^>. Therefore the topology on A^^<^> has been investigated by many researchers. In this research, we have researched conditions for A^^<^> to be discrete, and we have obtained the following result :
Theorem. Let A be a C^<**>-algebra. Then the following conditions are equivalent :
(1) A^^<^> is discrete in the Jacobson topology.
(2) There exists an ideal I of A such that I^^<^> and <(A/I)>^^^ are discrete in the relative topology of A^^<^> and the open projection p in A^<****> satisfying I=A^<****>p A is a multiplier for A.
(3) A^^<^> is a T_1-space in the Jacobson topology and every open central projection in A^<****> is a multiplier for A.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 楠田,雅治: "Unique Prolonegements des Valeurs Absolues des Formes Lineaires Normales sur les Algebres de von Neumann" Mathematica Japonica. 40. 123-126 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 楠田,雅治: "Characterizations of Hereditory C^*-subalgebras" Pure and Applied Mathematika Sciences. 41. 85-94 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 楠田,雅治: "Norm Additivity Conditions for Normal Linear Functionals on von Neumann algebras" Publications of Research Institute for Mathematical Sciences. 31. 721-723 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] C.-H.Chu: "On Factor States of C^*-algebras and their Extensions" The Proceedings of the American Mathematical Society. 124. 207-215 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] KUSUDA,Masaharu: "Unique Prolongements des Valeurs Absolues des Formes Lineaires Normales sur les Algebres de von Neumann." Mathematica Japonica. 40. 123-126 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KUSUDA,Masaharu: "Characterizations of Hereditary C^<**> -Subalgebras." Pure and Applied Mathematika Sciences. 41. 85-94 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KUSUDA,Masaharu: "Norm Additivity Ocnditions for Normal Linear Functionals on von Neumann Algebras" Publications of Research Institute for Mathematical Sciences. 31. 721-723 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] CHU,C.-H.: "On Factor States of C^<**> -Algebras and Their Extensions." Proceedings of the American Mathematical Society. 124. 207-215 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1997-03-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi