• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Nonlinear Schrodinger eqnations on riemannian manitolds

Research Project

Project/Area Number 07454017
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

KOISO Norihito  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70116028)

Co-Investigator(Kenkyū-buntansha) FUJIWARA Akio  Osaka University, Graduate School of Science, Lecturer, 大学院・理学研究科, 講師 (30251359)
WATANABE Takao  Osaka University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30201198)
KONNO Kazuhiro  Osaka University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (10186869)
MABUCHI Toshiki  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80116102)
IBUKIYAMA Tomoyoshi  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60011722)
Project Period (FY) 1995 – 1996
Keywordsnonlinear Schro-dinger equation / vortex filament equation / 3-dimensional nomogeneous space
Research Abstract

The purpose of our research was :
(1) to reduce the vortex filament equation to the nonlinear Schrodinger equation.
(2) by the reducing, to prove the existence of solutions.
(3) application of them.
We got the following results corresponding to each.
(1) We analyzed the problem on three-dimensional homogeneous spaces, which heavily reflect the differential geometric aspect of the equation. As the result, we have shown that the vortex filament equation corresponds to a nonlinear Schrodinger equation similar to the case of the euclidean space.
(2) We proved the existence of the solutions of the nonlinear Schrodinger equation. It implies that there is a short time solution of the vortex filament equation.
(3) In the above procedure, we have shown that the short time existence of the solutions of the nonlinear Schrodinger equation is stable under adding certain terms. On the uniqueness of the solution, we have proved that it always holds.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] N. Koiso: "On a wave eqnation corresponding to geodesias" Osaka J. Math.31・1. 93-98 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Koiso: "On Singular perturlation of a semilinear hyperbolic equation" Calc. Var.4. 89-101 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Koiso: "On the motion of a eurve towards elastica" Collection SMF, Seminaires et Congres. 1. 403-436 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Koiso: "The vortex filament equation and semilinear Schirdinger equation in harmltion symmetana spase" Osaka J. Math.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Koiso: "On a wave equation corresponding to geodesics" Osaka J.Math.31(1). 93-98 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Koiso: "On singular perturbation of a semilinear hyperbolic equation" Calc.Var.4. 89-101 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Koiso: "On the motion of a curve towards elastica" Collection SMF,Semimaires et Congres. 1. 403-436 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Koiso: "The vortex filament equation and semilinear Schrodinger equation in hermitian symmetric space" Osaka J.Math.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi