• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Theory of singular perturbations

Research Project

Project/Area Number 08454029
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

KAWAI Takahiro  KYOTO UNIVERSITY,Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (20027379)

Co-Investigator(Kenkyū-buntansha) OJIMA Izumi  KYOTO UNIVERSITY,Research Institute for Mathematical Sciences, Associate Profess, 数理解析研究所, 助教授 (60150322)
MOCHIZUKI Shinichi  KYOTO UNIVERSITY,Research Institute for Mathematical Sciences, Associate Profess, 数理解析研究所, 助教授 (10243106)
MUROTA Kazuo  KYOTO UNIVERSITY,Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (50134466)
OKAMOTO Hisashi  KYOTO UNIVERSITY,Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (40143359)
TAKEI Yoshitsugu  KYOTO UNIVERSITY,Research Institute for Mathematical Sciences, Associate Profess, 数理解析研究所, 助教授 (00212019)
Project Period (FY) 1996 – 1998
KeywordsExact WKB analysis / Borel resummation / monodromy groups / Painleve transcendents / multiple-scale / Schrodinger equations / Stokes curves / deformation (of differential equations)
Research Abstract

(1) Exact WKB analysis, i.e., WKB analysis based on the Borel summation has enabled us to describe the monodromy group for second order Fuchsian equations in terms of period integrals of Borel resummed WKB solutions. (Kawai-Takei, Algebraic Analysis of Singular Perturbations, Chap. 3, Iwanami (in Japanese)).
(2) 2-parameter formal solutions of Painleve equations with a large parameter are constructed by multiple-scale analysis, and then they are shown to be formally and locally reduced to some appropriate 2-parameter solution of the Painleve equation, type I.(Aoki-Kawai-Takei, in "Structure of Solutions of Differential Equations", World Scientific and Kawai and Takei, Adv. in Math., 134)
(3) Singular-perturbative reduction of a Hamiltonian system to the Birkhoff normal form, which may be used as a more transparent substitute of multiple-scale analysis in constructing 2-parameter formal solutions of Painleve equations. (Takei, Publ. RIMS, 34)
(4) A trial of exact WKB analysis for higher order ordinary differential equations with a large parameter through the presentation of Ansatz concerning their Stokes geometry. (Aoki-Kawai-Takei, Asian J.Math. 2)
(5) Asymptotic analysis of natural boundaries of solutions of non-linear differential equations of higher order (such as the Jacobi equation).
(6) Structure theory for non-linear equations other than Painleve equations.
Our study of items (4), (5) and (6) still remain on a preliminary stage.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] T.Aoki, T.Kawai, Y.Takei: "WKB analysis of Painleve transcendents with a large parameter. II-Multiple-scale analysis of Painleve transcendents-" Structure of Solutions of Differential Equations, World Scientific. 1-49 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Okamoto: "Nearly singular two-dimensional Kolmogorov flows for large Reynolds number" J.Dynamics and Diff.Eqns.8. 203-220 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Murota: "Convexity and Steinitz′s exchange property" Adv.in Math.124. 272-311 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kawai, Y.Takei: "WKB analysis of Painleve transcendents with a large parameter. III-Local reduction of 2-parameter Painleve transcendents" Adv.in Math.134. 178-218 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact WKB analysis for the third order ordinary differential equations with a large parameter" Asian J.Math.2. in press (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Takei: "Singular-perturbative reduction to Birkhoff normal form and instanton-type formal solutions of Hamiltonian systems" Publ.RIMS, Kyoto Univ.34. 601-627 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 河合隆裕、 竹井義次: "特異摂動の代数解析学" 岩波書店, 132 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡本 久、 藤井 宏: "非線型力学改定版" 岩波書店, 171 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "WKB analysis of Painleve transcendents with a large parameter. II-Multiple-scale analysis of Painleve transcendents.-" Structure of Solutions of Differential Equations, World Scientific. 1-49 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Okamoto: "Nearly singular two-dimensional Kolmogorov flows for large Reynolds number" J.Dynamics and Diff.Eqns.8. 203-220 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Murota: "Convexity and Steinitz's exchange property" Adv.in Math.124. 272-311 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawai, Y.Takei: "WKB analysis of Painleve Transcendents with a large parameter. III-Local reduction of 2-parameter Painleve Transcendents" Adv.in Math.134. 178-218 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact WKB analysis for the third order ordinary differential equations with a large parameter" Asian J.Math.2 in press. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Takei: "Singular-perturbative reduction to Birkhoff normal form and instanton-type formal solutions of Hamiltonian systems" Publ.RIMS,Kyoto Univ.34. 601-627 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kawai and Y.Takei: Algebraic Analysis of Singular Perturbations (In Japanese). Iwanami, (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi