• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Annual Research Report

保型表現と保型L関数の研究

Research Project

Project/Area Number 08640042
Research InstitutionHiroshima University

Principal Investigator

菅野 孝史  広島大学, 理学部, 助教授 (30183841)

Co-Investigator(Kenkyū-buntansha) 谷崎 俊之  広島大学, 理学部, 教授 (70142916)
隅広 秀康  広島大学, 理学部, 教授 (60068129)
Keywords保型形式 / L関数 / 新谷関数 / 保型表現 / アイゼンシュタイン級数 / ポアンカレ級数
Research Abstract

1.直交群上の保型形式について(村瀬篤氏との共同研究)
符号(2, m+3)の直交群o(2, m+3)上のEisenstein級数を0 (2, m+3)に制限したものを考えると、0 (2, m+2)上のEisenstein級数との差として一種のPoincare級数が生ずる。こうして定義された級数が、尖点形式となることを示すとともに、同時固有関数による展開を与えた。議論の鍵は、直交群上の新谷関数の利用による。
2.3次ユニタリ群上の保型形式について(村瀬篤氏との共同研究)
符号(1, 2)のユニタリ群上の正則保型形式を部分Fourier展開すると、各係数はテ-タ関数で与えられる。このテ-タ関数の数論的に良い基底としてprimitive theta functionが新谷宅郎氏により導入されている。Weil表現の良いモデルをとることにより、primitive theta functionを完全に局所的な形で定式化し、(与えられた虚二次体のノルム1の群に関する)固有関数の一意性を証明した。跡公式を用いているため、ノルム1の群のどのような表現が現れるかまでわかる。
3.新谷関数について(村瀬篤氏との共同研究)
我々は、一般の古典群上の保型形式に対し、新谷関数を利用してL関数を構成するプログラムを既に提示している。前年度迄に得られた直交群・ユニタリ群に続き、本年度は四元数ユニタリ群に取り組んだ。L関数構成の鍵となる局所的なノルム関数の計算を実行し、局所L関数の構成に成功した。

Research Products

(3 results)

All Other

All Publications (3 results)

  • [Publications] A. Murase: "Shintani functions and automorphic L-functions for GL(n)" Tohoku Math. J.48. 165-202 (1996)

  • [Publications] M. Kashiwara: "Kazhdan-Lusztig conjecture for affine Lie algebras with negative lever II non-integral case" Duke Math. J.84. 771-813 (1996)

  • [Publications] S. -J. Kang: "Universal R-matrices and the center of the guantum general kac-moody algebras" Hiroshima Math. J.(to appear).

URL: 

Published: 1999-03-07   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi