2009 Fiscal Year Annual Research Report
Project/Area Number |
08J01079
|
Research Institution | Kyoto University |
Principal Investigator |
千田 雅隆 Kyoto University, 大学院・理学研究科, 特別研究員(PD)
|
Keywords | L-不変量 / p進L関数 / Hilbert保型形式 / 志村曲線 / p進一意化 / rigid解析的保型形式 / harmonic cocycle / Coleman積分 |
Research Abstract |
今年度はHilbert保型形式に付随するp進L関数とL-不変量についての研究をマギル大学のJeehoon Park氏とカリフォルニア大学バークレー校のChung Pang Mok氏と共同で行った.p進BSD予想によって,楕円曲線が素数pで分裂乗法的還元を持つ場合,p進L関数の中心点での一階微分値は楕円曲線から定まる数論的普遍量を用いて記述されることが期待されるが,通常のBSD予想との比較から,その一階微分値はp進周期の一種であるL-不変量と通常のL関数の中心値を実周期で割った値との積になることが予想される.この予想は例外的零点予想と呼ばれている.この予想は楕円保型形式に対しても一般化されており,Hilbert保型形式の場合に従来の結果を拡張することが重要な問題として挙げられる.今回の研究では,まず初めのステップとしてTeitelbaumによって与えられたL-不変量の定義をHilbert保型形式の場合に一般化することから始めた.TeitelbaumはJacquet-Langlands対応及び志村曲線のp進一意化の理論を用いてL-不変量を定義しており,それを一般化するためにはSchneider, de Shalitなどにより研究されたrigid解析的保型形式やharmonic cocycle, Colemanによる線積分の理論などp進解析を用いた様々な概念をHilbert保型形式の場合に一般化し,従来知られていた結果を拡張する必要がある.今年度は特にrigid解析的保型形式の研究を中心的に行い,今回新たに導入したvector値のrigid解析的保型形式の理論を用いることで楕円保型形式の場合に知られていた結果を一般化するこどに成功した.さらにその結果を用いることでHilbert modular群のcohomologyにHilbert保型形式から定まるコサイクルを二つ構成し,比較することでTeitelbaumによるL-不変量の定義を一般化することができた.今回定式化したL-不変量は実際にpで分裂乗法的な還元を持つ総実代数体上の楕円曲線に対するL-不変量の一般化を与えていることが確認できる。ここで用いられたvector値のrigid解析的保型形式の概念は楕円保型形式の場合のL-不変量を定義する際には現れなかったものであり,その点が従来の手法と大きく異なる.
|