• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Integrable systems with infinite degrees of freedom

Research Project

Project/Area Number 09304002
Research Category

Grant-in-Aid for Scientific Research (A).

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

UENO Kenji  Kyoto Univ.Graduate School of Sci., Professor, 大学院・理学研究科, 教授 (40011655)

Co-Investigator(Kenkyū-buntansha) SAITO Masahiko  Kobe Univ.Graduate School of Sci., Professor, 大学院・理学研究科, 教授 (80183044)
SHIMIZU Yuji  Int.Chrisitan Univ.Dept.of Gen.Culture., Assoc.Professor, 教養学部, 準教授 (80187468)
MARUYAMA Masaki  Kyoto Uriv.Research Inst.Math.Sci., Professor, 大学院・理学研究科, 教授 (50025459)
NAMIKAWA Yukihiko  Nagoya Univ.Graduate School of Polymath., Professor, 大学院・多元数理科学研究科, 教授 (20022676)
FUJIWARA Kazuhiro  Nagoya Univ. Graduate School of Polymath., Assoc.Professo, 大学院・多元数理科学研究科, 講師 (00229064)
Project Period (FY) 1997 – 2000
Keywordsconformal filed theory / moduli space / modular functor / degeneration of curves / Heisenberg algebra / KZB equation / Painleve equation / Painleve equation
Research Abstract

In the present research we studied mainly conformal filed theory and string theory related to geometry of moduli spaces. We obtained the following main results.
1. Construction of modular functor :
Taking the tensor product of non-abelian conformal field theory and a fractional power of abelian conformal field theory we constructed modularfunctor. This implies that we can construct new invariants of threefolds associated with complex simple Lie algebras.
2. Reconstruction of abelian conformal field theory and study of relationship with degeneration of curves and conformal blocks :
Using Heisenberg algebra and vertex operator algebra we reconstruct abelian conformal field theory. It is a similar construction of non-abelian conformal field theory. This clarifies relationship between degeneration of curves and abelian conformal blocks.
3. Study of KZB equation :
The differential equations describing projectively flat connection of conformal blocks over the moduli space of curves of genus greater than or equal to one is called KZB equation. In the present study we gave new simple description of KZB equation and studied its properties.
4. Study of the moduli spaces of abelian surfaces and K3 surfaces :
Katsura and van der Geer gave stratification of the moduli spaces of abelian surfaces and K3 surfaces using the Artin-Mazur formal groups. They gave explicit description of cycle classes of the loci corresponding to supersingular surfaces.
5. The spaces of initial conditions of Painleve equations :
Saito and his group gave new method of classification of Painleve equations by using the fact the spaces of initial conditions are rational surfaces.
6. Study of superstring theory :
Eguchi and his group studied Landau-Ginzburg models and found a new description of isolated singularities of type E.Saito and his group studied mirror symmetry of rational elliptic surfaces.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Katsura,Toshiyuki: "On a stratification of the moduli of K3 surfaces."J.Eur.Math.Soc.. 2・3. 259-290 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Eguchi,Tohru: "Five-dimensional gauge theories and local mirror symmetry."Nuclear Phys.B. 586・1-2. 331-345 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Saito,Masahiko: "Prepotentials of Yukawa couplings of certain Calabi-Yau 3-folds and mirror symmetry. The arithmetic and geometry of algebraic cvcles"NATO Sci.Ser.C Math.Phys.Sci.. 548. 385-425 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Katsura,T.: "On a stratification of the moduli of K3 surfaces"J.Eur.Math.Soc.. 2・3. 259-290 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nakamura,Iku: "Hibert schemes of G-orbits in dimension three. Kodaira's issue."Asian J.Math.. 4・1. 51-70 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Eguchi,Tohru: "Five-dimensional gauge theories and local mirror symmetry."Nuclear Phys.B. 586. 331-345 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ueno,Kenji: "Algebraic geometry 2, Sheaves and Cohomology"Ameican Math.Society. 184 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Katsura, Toshiyuki: "On a stratification of the moduli of K3 surfaces"J.Eur.Math.Soc.. 2-3. 259-290 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Eguchi, Tohru: "Five-dimensional gauge theories and local mirror symmetry."Nuclear Phys.B. 586 1-2. 331-345 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Saito, Masahiko: "Prepotentials of Yukawa couplings of certain Calabi-Yau 3-folds and mirror symmetry. The arithmetic and geometry of algebraic cycles."NATO Sci.Ser.C Math.Phys.Sci.. 548. 385-425 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Katsura, T.: "On a stratification of the moduli of K3 surfaces."J.Eur.Math.Soc.. 2-3. 259-290 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nakamura, Iku: "Hilbert schemes of G-orbits in dimension three. Kodaira's issue."Asian J.Math.. 4-1. 51-70 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Eguchi, Tohru: "Five-dimensional gauge theories and local mirror symmetry."Nuclear Phys.B. 586. 331-345 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ueno, Kenji: "Algebraicgeometry2, Sheavesand Cohomology"Ameican Math.Society. 184 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi