• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Foundation of computational Commutative algebra with a view toward combinatorics on convex polytopes

Research Project

Project/Area Number 09440013
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

HIBI Takayuki  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80181113)

Co-Investigator(Kenkyū-buntansha) YANAGAWA Koji  Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (40283006)
NAMIKAWA Yoshinori  Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (80228080)
MIYANISHI Masayoshi  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80025311)
SUZUKI Takashi  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40114516)
KAWANAKA Noriaki  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (10028219)
Project Period (FY) 1997 – 1998
Keywordscomponentwise linear / generic initial ideal / Cohen-Macaulay ring / squaretree inonomial / lexsegment ideal / graded Betti number / polynomial ring / Kruskal-Katona thearem
Research Abstract

The important activity during the period of the present research project is, first, to present the concept of componentwise linear ideals and to establish its fundamental theory and, second, to study generic initial ideals of simplicial complexes and to discuss their concrete and effective applications to combinatorics. First of all, we obtained the theorem that the squarefree monomial ideal associated with a simplicial complex is componentwise linear if and only if its dual complex is sequentially Cohen-Macaulay, and explained the algebraic aspect of sequentially Cohen-Macaulay complexes and their h-triangles. Second, based on fundamental study about generic initial ideals of coruponentwise linear ideals, the important result that a homogeneous ideal of the polynomial ring possesses the stable Betti numbers if and only if the ideal is componentwise linear was established. Such the theorem guarantees that componentwise linear ideals will play an important role in computational commutative algebra. Third, in order to obtain sophisticated generalization of Kruskal-Katona theorem in classical combinatorics on finite sets, via the discussion on the existence of a squarefree strongly stable ideal having the same graded Betti numbers as those of the generic initial ideal of a squarefree ideal in the polynomial ring, we did succeed in obtaining the affirmative answer to the outstanding conjecture that the graded Betti numbers of a squarefree ideal with a fixed Hubert function are less than or equal to those of the lexsegment ideal.

  • Research Products

    (34 results)

All Other

All Publications (34 results)

  • [Publications] Naoki Terai: "Computations of Betti numbers of monomial ideals associated with stacked polytopes" Manuscripta Mats. 92. 447-453 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Naoki Terai: "Finite tree vesolutions and 1-skeletons of simplicial Complexes" J.Algebraic Canbinatorics. 6. 89-93 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jurgen Hertog: "Upper bounds for the number of tacets of a simplicial complex" Proc.Amer.Math.Soc.125. 1579-1583 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Annetta Aramova: "Gotzmam theorems for exteria algebras and combinatorics" J.Algebra. 191. 174-211 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Emanuelh De Negri: "Gorenstein algebras of Veronese type" J.Algebra. 193. 629-239 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Annetta Aramova: "Weakly stable ideals" Osaka J.Math.34. 745-755 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Annetta Aramova: "Squarefree lexsegnent ideals" Math.t.228. 353-378 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Winfried Brans: "Cohen-Macaulay partialk/ ordered sets with pure resolutions" Europ.J.Combin.19. 779-785 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hidefumi Ohsugi: "Normal polytopes arising from finite graphs" J.Algebra. 207. 409-426 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hidefumi Ohsugi: "A normal (0.1) -polytope none of whose regular triangulations is unimodular" Discrete and Comput.Geom.21. 201-204 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hidefumi Ohsugi: "Koszul bipartite graphs" Advances in Applied Math.22. 25-28 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takayuki Hibi: "The camparability graph of a modular lattico" Combinatorica. 出版予定. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jurgen Herzog: "Componentwise linear ideals" Magoya Math.J.出版予定. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jurgen Herzog: "Strougly Koszul algebras" Math.Scand.出版予定. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hidefumi Ohsugi: "Toric ideals generated by quadratic binomials" J.Algebra. 出版予定. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yukihide Takayama: "seeinitz theorem analogue for 2-dimensional cohen-Macanlay complexes" Advances in Applied Math.出版予定. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Annetta Aramova: "Ideals uitn stable Betti numbers" Advances in Math.出版予定. (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Naoki Terai and Takayuki Hibi: "Computation of Betti numbers of monomail ideals associated with stacked polytopes" Manuscripta Math.92. 447-453 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Naoki Terai and Takayuki Hibi: "Finite free resolutions and 1-skeletons of simplicial complexes" J.Algebraic Combin.6. 89-93 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Juegen Herzog and Takayuki Hibi: "Upper bounds for the number of facets of a simplicial complex" Proc.Amer.Math.Soc.125. 1579 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Annetta Aramova: "Jurgen Herzog and Takayuki Hibi, Gotzmann theorems for exterior algebras and combinatorics" J Algebra. 191. 174-211 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Emanuela De Negri and Takayuki Hibi: "Gorenstein algebras of Veronese type" J.Algebra. 193. 629-639 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Annetta Aramova, Jurgen Herzog and Takayuki Hibi: "Weakly stable ideals" Osaka J.Math.34. 745-755 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Annetta Aramova, Jurgen Herzog and Takayuki Hibi: "Squarefree lexsegment ideals" Math.Z.228. 353-378 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Winfried Bruns and Takayuki Hibi: "Cohen--Macaulay partially ordered sets with pure resolutions" Burop.J.Combin.19. 779-785 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidefumi Ohsugi and Takayuki Hibi: "Normal polytopes arising from finite graphs" J.Algebra. 207. 409-426 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidefumi Ohsugi and Takayuki Hibi: "A normal (0,1)-polytope none of whose regular triangulations is unimodular" Discrete and Comput. Geom.21. 201-204 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidefumi Ohsugi and Takayuki Hibi: "Koszul bipartite graphs" Advances in Applied Math.22. 25-28 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takayuki Hibi: "The comparability graph of a modular lattice" Combinatorica. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jurgen Herzog and Takayuki Hibi: "Componentwise linear ideals" Nagoya Math.J.(in press.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jurgen Herzog, Takayuki Hibi and Gaetana Restuccia: "Strongly Koszul algebras" Math.Scand.(to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidefumi Ohsugi and Takayuki Hibi: "Toric ideals generated by quadratic binomials" J.Algebra. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yukihide Takayama and Takayuki Hibi: "Steinitz' theorem analogue for 2-dimensional Cohen--Macaulay complexes" Advances in Applied Math.(to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Annetta Aramova, Jurgen Herzog and Takayuki Hibi: "Ideals with stable Betti numbers" Advances in Math.(to appear.).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi