• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Completely integrable systema and representation theory of infinite dimen-sional algebras

Research Project

Project/Area Number 09440014
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

DATE Etsuro  Osaka Univ.Grad.School of Sci.Professor, 大学院・理学研究科, 教授 (00107062)

Co-Investigator(Kenkyū-buntansha) MIKI Kei  Osaka Univ.Grad.School of Sci.Associate Professor, 大学院・理学研究科, 助教授 (40212229)
NAGATOMO Kiyokazu  Osaka Univ.Grad.School of Sci.Associate Professor, 大学院・理学研究科, 助教授 (90172543)
SUZUKI Tkashi  Osaka Univ.Grad.School of Sci.Professor, 大学院・理学研究科, 教授 (40114516)
KOTANI Shin'ichi  Osaka Univ.Grad.School of Sci.Professor, 大学院・理学研究科, 教授 (10025463)
KAWANAKA Noriaki  Osaka Univ.Grad.School of Sci.Professor, 大学院・理学研究科, 教授 (10028219)
Project Period (FY) 1997 – 1998
KeywordsOnsager algebra / nilpotent Lie algebras / Schur function / Schrodinger operator / semilinear elliptic equation / vertex operator algebra / L operators
Research Abstract

In a collaboration with Professor S.S.Roan of Academia Sinica (Taipei), the head investigator of this research project has determined the structure of quotient of the Onsager algebra by ideals of it in the case when the quotients do not have central elements. This almost determines the structure of quotients of the Onsager algebra. In particular the case not determined in the previous researches are fixed by finding a relation with the project of classifying nilpotent Lie algebras by classifying the ideals in the nilpotent part of Kac-Moody Lie algebras. To find such relationship computer algebra system on a workstation was very helpful and indispensable, especially in computing examples. The Onsager algebra can be viewed as a Lie algebra deformation of the nilpotent part of the affine Lie algebra A^<(1)>_1. If we identify A^<(1)>_1 with a central extension of the current algebra, the Onsager algebra is a fixed point set of an involution. By using this presentation we can study the structures of ideals of the Onsager algebra. In order to fix the remining case, we used the principal (twisted) realization of A^<(1)>_1. We think that this kind of principal realization will play some important role in the study of deformation of nilpotent parts of other affine Lie algebras in connection with conformal field theory. We are preparing manuscript on this result. Other investigators in this research project have obtained new results in the study of spectrum of one dimensional Schrodinger operator with a random potential, an identity involving Schur functions, positive solutions of sernilinear elliptic partial differential equations, classification of irreducible representations of vertex operator algebras related with free fermions, relationship of L operators in quantum inverse scattering method and Drinfeld's genarators in affine quantum enveloping algebras and other areas.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] 川中宣明: "A g-series identity in volving Schur-functions and related topics" Osaka Journal of Mathematics. 36・1. 157-176 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小谷真一: "Genaralized Floquet theory for stationary Schrodinger operators in one dimension" Chaos Soliton and Fractals. 8. 1817-1854 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 鈴木貴(Y.Naito): "Radial symmetry of positive solutions for semilinear elliptic equations on the unit ball in TR^m" Funkcial Ekinc.41. 215-234 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 永友清和(松尾〓): "A note on free bosonic vertex algebra and its confornal vectors" Journal of Algebra. 212. 395-418 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 永友清和(C.Dong): "Representations of vertex operator algebra VL^t for rank one lattice L" Comm.Math.Phys. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 三木敬(早石典史): "L operators and Drinfeld's generators" Journal of Mathematical Physics. 39. 1623-1636 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小谷真一: "測度と確率I,II(現代数学の基礎)" 岩波書店, 350 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 永友清和(松尾〓): "Axioms for Vertex Algebra and the locality of Quantum Fields (MSJ Memoirs 4)" 日本数学会, 110 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Kawanaka: "A q-series identity involving Schur funcions and related topics" Oasaka J.Math.32. 157-176 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kotani: "Generalized Floquet theory for stationary Schrodiger operators in one dimension" Chaos Soliton and Fractals. 8. 1817-1854 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Suzuki (Y.Naito): "Radial symmetry of positive solutions for semilinear elliptic equations on the unit ball R^n" Funkcial Ekvac.41. 215-234 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Nagatomo (A.Matsuo): "A note on free bosonic vertex algebra and its conformal vectors" J.of Alg.212. 395-418 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Nagatomo (C.Dong): "Representations of vertex operator algebra V^+_ for rank one lattice L" Comm.Math.Phys.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Miki (N.Hayaishi): "L operators and Drinfeld's generators" J.Math.Phys.39. 1623-1636 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kotani: Sokudo to Kakuritsu I,II (in japanese). Iwanami Shoten, 350 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Nagatomo (A.Matsuo): Axioms for vertex algebra and the locality of quantum fields. Math.Soc.Japan, 110 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi