1998 Fiscal Year Final Research Report Summary
Variational Problems in Differential Geometry
Project/Area Number |
09440030
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Nagoya University |
Principal Investigator |
NAITO Hisashi Nagoya Univ.Grad.School of Math., Associate Prof., 大学院・多元数理科学研究科, 助教授 (40211411)
|
Co-Investigator(Kenkyū-buntansha) |
TANIGAWA Harumi Nagoya Univ.Grad.School of Math., Research Asistant, 大学院・多元数理科学研究科, 助手 (30236690)
EJIRI Norio Nagoya Univ.Grad.School of Math., Associate Prof., 大学院・多元数理科学研究科, 助教授 (80145656)
NAWA Hayato Nagoya Univ.Grad.School of Math., Associate Prof., 大学院・多元数理科学研究科, 助教授 (90218066)
KOZONO Hideo Nagoya Univ.Grad.School of Math., Associate Prof., 大学院・多元数理科学研究科, 助教授 (00195728)
OHTA Hiroshi Nagoya Univ.Grad.School of Math., Associate Prof., 大学院・多元数理科学研究科, 助教授 (50223839)
|
Project Period (FY) |
1997 – 1998
|
Keywords | Heat Flow / Yang-Mills connection |
Research Abstract |
In this research, we study a behavior of solutions of Yang-Mills heat flow on compact 4-manifolds. We obtain result which is a type of "small data global existence". It is well-known that there exists the lower bound of the energy of smooth connections over compact 4-manifolds. The bound is determined by the topological invariant of the pricipal bundle. In this research, we prove that if the energy of the initial data is close to the bound, then there exists a time-global smooth solution of the Yang-Mills heat flow.
|