• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Gemetric Structures on Manifolds and Global Analysis

Research Project

Project/Area Number 09440034
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKanazawa University (1998-1999)
Nara Women's University (1997)

Principal Investigator

KOBAYASHI Osamu  Kanazawa University, Faculty of Science, Professor, 理学部, 教授 (10153595)

Co-Investigator(Kenkyū-buntansha) FUJIOKA Atsushi  Kanazawa University, Faculty of Science, Instructor, 理学部, 助手 (30293335)
KITAHARA Haruo  Kanazawa University, Faculty of Science, Professor, 理学部, 教授 (60007119)
KODAMA Akio  Kanazawa University, Faculty of Science, Professor, 理学部, 教授 (20111320)
KATO Shin  Osaka City University, Faculty of Science, Associate Professor, 理学部, 助教授 (10243354)
KATAGIRI Minyo  Nara Women's University, Faculty of Science, Associate Professor, 理学部, 助教授 (60263422)
Project Period (FY) 1997 – 1999
Keywordsconfomal structure / conformal connection / Moebius geometry / projective structure / scalar curvature / Ricci curvature / Schwarzian / vertex
Research Abstract

Among many geometric structures of a manifold we are mainly interested in those structures which are closely related to the conformal geometry. Here are some of main results of this research project :
1. The scalar curvature equation. This equation describes the scalar curvature under a conformal change of a Riemannian metric. A systematic analysis has been done on non-compact manifolds, and the space of complete confomal metrics with prescribed scalar curvature is made clearer.
2. The Weyl structure. This is a torsion free affine connection that is compatible with a given conformal class. It is shown that the Ricci curvature is a complete invariant of a Weyl structure. Also conformally flat Einstein-Weyl structures on compact manifolds are classified.
3. Moebius geometry. The minimum number of vertices of a regular closed curve on the sphere with given topological type is completely determined in the case when the curve has at most five self-inter-sections. Also we introduce a Schwarzian derivative of a regular curve. This leads to new proofs of injectivity results of Nehari type. A gist is that a confomal strucutre of a manifold induces an integrable projective structure of a regular curve on the manifold. It is shown that injectivity of the projective development map of the curve implies the injectivity of the immersion to Moebius spaces.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] O. Kobayashi: "Vertices of Curves With Complementary Shells"Kobe J. Math.. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Fujoka: "Surfaces with harmonic inverse mean curvature in space forms"Proc. Amer. Math. Soc.. 127. 3021-3025 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Katagiri: "On compact conformally flat Einstein-Weyl manifolds"Proc. Japan Acad.. 74A. 104-105 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Katagiri: "On the uniqueness of a Weyl structure with prescribed Ricci curvature"Tokyo J. Math.. 21. 453-455 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Kato: "Uniqueness of solutions of an elliptic singular boundary value problem"Osaka J. Math.. 35. 279-302 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加藤 信: "開リーマン多様体上のスカラー曲率の方程式"数学. 51. 225-240 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] O. Kobayashi: "Vertices of Curves With Complementary Shells"Kobe J. Math.. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Fujioka: "Surfaces with harmonic inverse mean curvature in space forms"Proc. Amer. Math. Soc.. 127. 3021-3025 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Katagiri: "On compact conformally flat Einstein-Weyl manifolds"Proc. Japan. Acad.. 74A. 104-105 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Katagiri: "On the uniqueness of a Weyl structure with prescribed Ricci curvature"Tokyo J. Math.. 21. 453-455 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Kato: "Uniqueness of solutions of an elliptic singular boundary value problem"Osaka J. Math.. 35. 279-302 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Kato: "The scalar curvature equation on non-compact manifolds"Sugaku. 51. 225-240 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi