• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Spectral and Scattering Theory for Schrodinger Operators

Research Project

Project/Area Number 09440055
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionUniversity of Tokyo

Principal Investigator

NAKAMURA Shu  Graduate School of Mathematical Sciences, University of Tokyo, 大学院・数理科学研究科, 教授 (50183520)

Co-Investigator(Kenkyū-buntansha) KATO Keiichi  Science University of Tokyo, Faculty of Sciences, 理学部, 助教授 (50224499)
OGAWA Takayoshi  Kyushu University, Graduate School of Mathematics, 数理学研究院, 助教授 (20224107)
YAJIMA Kenji  Graduate School of Mathematical Sciences, University of Tokyo, 大学院・数理科学研究科, 教授 (80011758)
Project Period (FY) 1997 – 2000
KeywordsSchrodinger operator / scattering theory / spectral theory / random Schrodinger operator / semiclassical limit
Research Abstract

The purpose of this project is to investigate the spectral and scattering theory for Schrodinger operators in general. Moreover, it is also intended to explore new area of problems in quantum physics and related topics. Quite a few reserch results has been obtained in the project, and only a selected results by the head investigator and collaborators are presented here.
1. By employing the theory of phase space tunneling, it is proved that the exponential decay rate of eigenfunctions for Schrodinger operator is larger in the semiclassical limit in the presence of constant magnetic field.
2. Semiclassical asymptotics of the scattrering is investigated. In particular, it is shown that the spectral shift function has a rapid jump (of the size 2π times integer) near each quantum resonance.
3. It is shown that the coefficients of the scattering matrix corresponding to the interaction between two nonintersecting energy surfaces decay exponentially in the semiclassical limit. A new method to analyze the phase space tunneling is developed and employed (joint work with A.Martinez, V.Sordoni).
4. The Lifshitz tail for the integrated density of states is proved for 2 dimensional discrete Schrodinger operators and continuous Schrodinger operators (arbitrary dimension) with Anderson-type random magnetic fields.
5. A new proof of the Wegner estimate based on the theory of the spectral shift function is developed. The Wegner estimate plays crucial role in the proof of Anderson localization for random Schrodinger operators (joint work with J.M.Combes, P.D.Hislop).

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] Shu Nakamura: "A remark on the Dirichlet-Neumann decoupling and the integrated density of states"Journal of Functional Analysis. 179. 136-152 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Lifshitz tail for Schrodinger operator with random magnetic field"Communications in Mathematical Physics. 214. 565-572 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Lifshitz tail for 2D discrete Schrodinger operator with random magnetic field"Annals of Henri Poincare. 1. 823-835 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Spectral shift function for trapping energies in the semiclassical limit"Communications in Mathematical Physics. 208. 173-193 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Tunneling estimates for magnetic Schrodinger operators"Communications in Mathematical Physics. 200. 25-34 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "Agmon-type exponential decay estimates for pseudodifferential operators"J.Math.Sci.Univ.Tokyo. 5. 693-712 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡本久,中村周: "岩波講座「現代数学の基礎」第7巻,関数解析1,2"岩波書店. 266 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shu Nakamura: "A remark on the Dirichlet-Neumann decoupling and the integrated density of states"Journal of Functional Analysis. 179. 136-152 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shu Nakamura: "Lifshitz tail for Schrodinger operator with random magnetic field"Communications in Mathematical Physics. 214. 565-572 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shu Nakamura: "Lifshitz tail for 2D discrete Schrodinger operator with random magnetic field"Annals of Henri Poincare. 1. 823-835 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shu Nakamura: "Spectral shift function for trapping energies in the semiclassical limit"Communications in Mathematical Physics. 208. 173-193 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shu Nakamura: "Tunneling estimates for magnetic Schrodinger operators"Communications in Mathematical Physics. 200. 25-34 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shu Nakamura: "Agmon-type exponential decay estimates for pseudodifferential operators"J.Math.Sci.Univ.Tokyo. 5. 693-712 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi