• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Application of Wavelets to Observational Data Analysis

Research Project

Project/Area Number 09554002
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section展開研究
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionUniversity of Tokyo

Principal Investigator

YAMADA Michio  Dept. of Math. Sci., Univ. of Tokyo, Prof., 大学院・数理科学研究科, 教授 (90166736)

Co-Investigator(Kenkyū-buntansha) SAKAKIBARA Susumu  Dept. of Sci. and Eng., Iwaki Meisei Univ. Prof., 理工学部, 教授 (70196062)
ISHIOKA Keiichi  Dept. of Math. Sci., Univ. of Tokyo, Prof., 大学院・数理科学研究科, 助教授 (90292804)
SATSUMA Junkichi  Dept. of Math. Sci., Univ. of Tokyo, Prof., 大学院・数理科学研究科, 教授 (70093242)
KOBAYASHI Mei  Tokyo Research Lab., IBM, Researcher, 東京基礎研究所, 副主任研究員
SASAKI Fumio  Intelligent Systems Dept., Kajima Co., Researcher, 情報システム部, 主査(研究職)
Project Period (FY) 1997 – 1999
Keywordswavelet / biorthogonal wavelet / time-frequency analysis / block-diagonalization / base-line correction / Riesz potential / seismic data / time-series analysis
Research Abstract

Application of wavelet analysis to observational data is studied. Taking an acceleration data of earthquake as an example, we propose a data correction method consisting of biorthogonal wavelet expansion and Lagrange multiplier method. This method is based on wavelet expansion and enables us to correct the data locally in time-frequency domain. Moreover we devised an algorithm to generate biorthogonal wavelets which diagonalize/semi-diagonalize a class of linear operators in-variant to scale transformation, in order to reduce numerical task in the data correction including, integration, for example. We applied this algorithm to Riesz potential, derivative Hilbert transformation and Abel transformation. Numerical inspection shows that elements of the representation matrices decay rapidly in the off-diagonal region. This means that the matrices can accually be treated as band-diagonal ones, and permits us fast calculation. We also studied engineering application of wavelets to problems including friction and oscillation absorption.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] F. Sasaki: "Biorthogonal Wavelet Adapted to Integral Operators and Their Applications"Japan J. of Indust. Appl. Math. 14. 257-277 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Sakamoto: "Wavelet Analysis of Acoustical Signals"J. of Japan Soc. For Simulation Tech.. 12. 27-34 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Yamada: "Wavelet Analysis of Atmospheric Wind, Turbulence Fliud and Seismic Acceleration Data"Wavelets and their Applications : Case Studies. SIAM. 101-138 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Sakakibara: "A Wavelet-Based Techique for Rducing Noise in Laboratory Data"Wavelets and their Applications : Case Studies. SIAM. 25-44 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Kobagashi: "Wavelet Analysis for Text-to-Speech Systems"Wavelets and their Applications : Case Studies. SIAM. 75-100 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Higama: "Wavelet-Based Multiresolution Display of Shoreline Data"Wavelets and their Applications : Case Studies. SIAM. 1-24 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] F. Sasaki and M. Yamada: "Biorthogonal Wavelet Adapted to Integral Operators and Their Applications"Japan J. of Indust. Appl. Math.. Vol. 14, No. 2. 257-277 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Sakamoto and M. Kobayashi: "Wavelet Analysis of Acoustical Signals"Journal of the Japan Society for Simulation Technology. 27-34 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Yamada and F. Sasaki: "Wavelet Analysis of Atmospheric Wind, Turbulence Fluid, and Seismic Acceleration Data"Wavelets and their Applications : Case Studies, M. Kobayashi (ed.) Book Publications. SIAM. 101-138 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Sakakibara: "A Wavelet-Based Technique for Reducing Noise in Laboratory Data"Wavelets and their Applications : Case Studies, ed. by M. Kobayashi. SIAM Chapter 2. 25-44 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Kobayashi, M. Sakamoto, T. Saito, Y. Hashimoto, M. Nishimura, and K. Suzuki: "Wavelet Analysis for Text-to-Speech systems in M. Kobayashi, (ed.)"Wavelets and Their Applications : Case Studies. SIAM. 75-100 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Hiyama and M. Kobayashi: "Wavelet-Based Multiresolution Display of Shoreline Data in Kobayashi, M. (ed.)"Wavelets and Their Applications : Case Studies. SIAM. 1-24 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi