• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Learning Baysian Networks based on the MDL principle

Research Project

Project/Area Number 09680367
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionOsaka University

Principal Investigator

SUZUKI Joe  Osaka University Graduate school of Science Associate Professor, 大学院・理学研究科, 助教授 (50216397)

Co-Investigator(Kenkyū-buntansha) SATAKE Ikuo  Osaka University Graduate school of Science Research Associate, 大学院・理学研究科, 助手 (80243161)
KIKUCHI Kazunori  Osaka University Graduate school of Science Research Associate, 大学院・理学研究科, 助手 (40252572)
TAKAHASHI Satoshi  Osaka University Graduate school of Science Lecturer, 大学院・理学研究科, 講師 (70226835)
NAGATOMO Kiyokazu  Osaka University Graduate school of Science Associate Professor, 大学院・理学研究科, 助教授 (90172543)
MURAKAMI Jun  Osaka University Graduate school of Science Associate Professor, 大学院・理学研究科, 助教授 (90157751)
Project Period (FY) 1997 – 1998
KeywordsMDL principle / Baysian Networks / machine learning / a prior knowledge / lranch and bound lechuzue
Research Abstract

In this study, the computational issue in the problem of learning Bayesian belief networks (BBNs) based on the minimum description length (MDL) principle is addressed.Based on an asymptotic formula of description length, we apply the branch and bound technique to finding true network structures.The resulting algorithm searches considerably saves the computation yet successfully searches the network structure with the minimum value of the formula.Thus far, there has been no search algorithm that finds the optimal solution for examples of practical size and a set of network structures in the sense of the maximum posterior probability, and heuristic searches such as K2 and K3 trap in local optima due to the greedy nature even when the sample size is large.The proposed algorithm, since it minimizes the description length, eventually selects the true network structure as the sample size goes to infinity.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Joe Suzuki: "A Further Result on the Markor Chain Model of GAs and then Application to SA-like strategy" IEEE Trans.on Systems,Man,and Cybern.Part B. Vol28 no1. 95-102 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Joe Suzuki: "A Relation ship between Context Tree Weijhting and General Weighting Techniques for Tree Sources" IEICE Trans.on Founclamentals.Vol81-A no10. 2412-2417 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Joe Suzuki: "Learning Bayesian Belief Networks Based on the MDL Principle : An efficiえnt algorithm using the branch and bound techniques." IEICE Trans.on Information and Sysstems.Vol82-D no2. 356-366 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Joseph Silverman and Joe Suzuki: "Elliptec Curve Discrete Logarcthm and the Index Calculus" Lecture Note on Computer.Science,Asia crypt '98. 1514. 110-125 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Harasawa,Shikata Suzuki Imai: "Comparing the Mov and FR reductions in Elliptic Curve Crypto graphy" Lecture Note on Computer Science,Eurocrypt '99. 1592. 189-204 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hojo,Ryobko,Suzuki: "It is not enough to use stationary ergodic source for analyzing universal coding" Int.Symp.on Information Theory and its applications. (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 鈴木 譲,横尾英俊: "情報理論とその応用学会 情報源符号化とデータ圧縮 一無なみ圧縮(分筆)" 培風館, 18 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Joe Suzuki: ""A Further Result on the Markov Chain Model of GAs and Their Application to SA-like Strategy"" IEEE Trans.on System, Man, and Cybernetics Part B. Vol.28, No.1. 95-102 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Joe Suzuki: ""A Relationship between Context Tree Weighting and General Model Weighting Tech-niques for Tree Sources"" IEICE Trans.on Fundamentals.Vol.81-A,No.10. 2412-2417 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Joseph H.Silverman and Joe Suzuki: ""Elliptic Curve Discrete Logarithms and the Index Calculus"" Lecture Note on Computer Science (1514), Asiacrypt'98. Springer-Verlag. 110-125 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Joe Suzuki: ""Learning Baysian Belief Networks Based on the MDL Principle : An Efficient Algorithm Using the Branch and Bound Technique"" IEICE Trans.on Information and Systems. Vol.82-D,No.2. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ryuichi Harasawa, Junji Shikata, Joe Suzuki, Hideki Imai: ""Comparing the MOV and FR Reductions in Elliptic Curve Cryptography"" Lecture Note on Computer Science (1592), Eurocrypt'99. Springer-Verlag. 189-204 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Boris Ryabko, Kouki Hojou, and Joe Suzuki: ""It is not enough to use stationary ergodic source for analyzing universal coding."" ISITA'98, Mexico City, Mexico. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Joe Suzuki and Hidetoshi Yokoo: "Source Coding and Data Compression-Noiselss Coding-" (18pages, in Japanese), The Society of Information Theory and its Applications. Baihukan, (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi