2010 Fiscal Year Annual Research Report
LiborMarketModel下における長期為替オプションの数値的評価方法
Project/Area Number |
09J10226
|
Research Institution | The University of Tokyo |
Principal Investigator |
竹原 浩太 東京大学, 大学院・経済学研究科, 特別研究員(DC2)
|
Keywords | 漸近展開 / デリバティブ(金融派生商品) / Malliavin解析 / Libor market model / 確率的ボラティリティ / ジャンプ過程 / 近似手法 / 通貨オプション |
Research Abstract |
本年度は主にLibor Market Model下での長期為替オプションの評価問題を題材として,ファイナンスのおける一般的なモデル下でのデリバティブの価格等の評価に対する漸近展開法の応用を検討した. まず,i)4次以上の高次を含む任意の次数の展開に対する評価法に関しては,既に昨年度導いた結果を利用して,(昨年度は漸近展開の具体的評価の手続きを導いただけであったのに対し)任意の次数の展開において出現する各係数が満たす微分方程式を具体的に与える公式を導出した.またこれらの結果を用いて他の漸近展開的手法との精度比較を行い,その精度や応用の際の容易さ,また適用範囲の広さの観点から優位性を確認した.またii)漸近展開法における分布の展開の中心を従来の正規分布から他のものに変更することに関しても検討した.特に,主に対数正規分布の周りでの展開を考察し,以前までに得られていた結果を拡張した.この際,通常は解析の困難であるジャンプ項や複雑な相関構造を含むような一般的なケースに対しても応用可能であることに留意しておく. さらに,iii)前項までで扱っていた経路に依存しないタイプの派生証券に加えて,経路依存型の派生証券の価格付けも考察し,バリア型及びアメリカン型(早期行使が可能なもの)に関して既存の手法と組み合わせることを検討した.こうした成果により,これまで優れた理論背景を持ちながらも,近年の実務上の最先端課題に対する応用時のパフォーマンスが十分でなかった漸近展開法が,その応用範囲と精度の観点から,真に実務的かつ汎用性を持つ手法として確立されたと言える. なお,これらの結果は,東京大学大学院経済学研究科の高橋明彦教授及び戸田真史君との共同研究である.
|