• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Study of moduli spaces, and K3 moonshine

Research Project

Project/Area Number 10304001
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERCITY (2001)
Nagoya University (1998-2000)

Principal Investigator

MUKAI Shigeru  KYOTO UNIVERCITY, Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (80115641)

Co-Investigator(Kenkyū-buntansha) NAKAYAMA Noboru  KYOTO UNIVERCITY, Research Institute for Mathematical Sciences, Associate Professor, 数理解析研究所, 助教授 (10189079)
HASHIMOTO Mitsuyasu  Graduate School of Mathematics, Nagoya Univ., Associate Professor, 大学院・多元数理科学研究科, 助教授 (10208465)
KONDO Shigeyuki  Graduate School of Mathematics, Nagoya Univ., Professor, 大学院・多元数理科学研究科, 教授 (50186847)
SAITO Masa-hiko  Dept. of Math., Kobe Univ., Professor, 理学部, 教授 (80183044)
FUJINO Osamu  KYOTO UNIVERCITY, Research Institute for Mathematical Sciences, Research Associate, 数理解析研究所, 助手 (60324711)
Project Period (FY) 1998 – 2001
Keywordsmoduli / vector bundle / invariant / Verlinde formula / conformal block / Hilbert's 14th problem / fundamental domain / K3 surface
Research Abstract

1. We reconstructed the geometric invariant theory and constructed the moduli space of vector bundles without using the Grothendieck's Quot-scheme. Both simplified the moduli theory of vector bundles a lot. We expect new development will be followed on this foundation. For example, it is interesting to study the degeneration of Jacobian using our description.
2. The construction of moduli spaces of vector bundles with additional structure, say parabolic structure or stable pair, were also simplified. By virtue of this, the celebrated Verlinde formula is now regarded as the Cayley-Sylvester type explicit formula for a certain invariant ring. We hope that many mathematics around the formula, including the affine Lie algebra, Hecke algebra and quantum group, will become theorems in a modern invariant theory.
3. The master space of the moduli of rank two parabolic vector bundles over punctured Riemann sphere, or equivalently pointed projective line, exists. Its coordinate ring is the invaria … More nt ring of a certain square zero linear action of the 2-dimensional additive group on a polynomial ring. In particular, the invariant ring is finitely generated. Together with the results mentioned below, we have solved the (original) Hilbert fourteenth problem for the square free action of multi-dimensional additive groups.
4. We constructed a counterexample of Hilbert's fourteenth problem for the 3-dimensional additive group. This ring is isomorphic to the total coordinate ring of the blow-up of the 5-dimensional projective space at nine points. We also gave a simplified proof of this isomorphism.
5. We found a new proof of the Shafarevich conjecture on the algebraicity of a certain class of Hodge cycles on the product of two K3 surfaces.
6. We defined a bi-level structure of an abelian variety and studied the moduli of abelian surfaces equipped with this structures. The moduli spacce is very simple and has a lot of geometry when the polarization type is (1,d) and d 【less than or equal】 5. It is very interesting to apply the trace formula to this moduli problem and determine the multiplicative structure of the ring of automorphic forms. Less

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] MUKAI, Shigeru: "Duality of polarized K3 surfaces"Proc. Euroconference on Alg. Geom.. 107-122 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] MUKAI, Shigeru: "Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group"RIMS preprint. 1343. 1-12 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] KONDO, Shigeyuki: "On the Kodaira dimension of the moduli space of K3 surfaces II"Compositio Math.. 116. 111-117 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] KONDO, Shigeyuki: "A complex hyperbolic structure of the moduli space of curves of genus three"J. reine angew. Math.. 525. 219-232 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] SAITO, Masa-Hiko, UMEMURA, Hiroshi: "Painleve equations and deformations of rational surfaces with rational double points"Physics and combinatorics. 320-365 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] SAITO, Masa-Hiko: "The modularity conjecture for rigid Calabi-Yau threefolds over Q"J. Math. Kyoto Univ.. 41. 403-419 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 向井 茂: "モジュライ理論1, 2"岩波書店. 455 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] MUKAI, Shigeru: "Duality of polarized K3 surfaces"New Trends in Alg, Geom., Cambridge Univ. Press. 107-122 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MUKAI, Shigeru: "Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group"RIMS preprint. 1343. 1-12 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MUKAI, Shigeru: "Introduction to invariants and moduli, English translation of the 2-volume book published from Iwanami Shoten"to appear from Cambridge University Press in 2001.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KONDO^^-, Shigeyuki: "On the Kodaira dimension of the moduli space of K3 surfaces II"Compositio Math.. 116. 111-117 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KONDO^^-, Shigeyuki: "A complex hyperbolic structure of the moduli space of curves of genus three"J. reine angew. Math.. 525. 219-232 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] SAITO Masa-Hiko, UMEMURA Hiroshi: "Painleve equations and deformations of rational surfaces with rational double points"Physics and Combinatorics, World Scientific. 320-365 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] SAITO, Masa-Hiko: "The modularity conjecture for rigid Calabi-Yau threefolds over Q"J. Math. Kyoto Univ.. 41. 403-419 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi