2011 Fiscal Year Annual Research Report
Project/Area Number |
10J06817
|
Research Institution | The University of Tokyo |
Principal Investigator |
大久保 俊 東京大学, 大学院・数理科学研究科, 特別研究員(DC2)
|
Keywords | p進表現 / p進微分方程式 / 分岐理論 |
Research Abstract |
先年度に引き続き、本年度もp進表現論の高次元化へ向け、非完全な剰余体を持つ完備離散付値体のp進Hodge理論を研究した。 先年度に証明をした、p進表現に対するp進モノドロミー定理の水平な類似を論文にまとめたところ、若干の修正をすると、剰余体が非完全な場合のp進モノドロミー定理を証明できることに気づいた。そこで本年度は、剰余体が非完全の場合のp進モノドロミー定理を証明し、論文"The p-adic monodromy theorem in the imperfect residue field case"にまとめて投稿した。以下で証明の手法を述べる。p進モノドロミー定理は剰余体が完全な場合には、p進微分方程式の理論を用いることで、L.Bergerにより証明された。その後、P.Colmezによりp進微分方程式を用いらない別証明が与えられた。今回の手法はこの証明の一般化である:ColmezのDieudonne-Manin分類定理を用いることで、ド・ラーム表現Vに対し、あるガロワ加群を構成し、この加群のガロワコホモロジーの計算に帰着した:先年度は、このガロワ加群の構成するためにはVが水平なド・ラーム表現であるという仮定が必要だと思っていたが、一般のド・ラーム表現の場合にも接続の作用を考えることで、構成が可能である。さらに、先年度の結果である水平な場合のp進モノドロミー定理は、p進モノドロミー定理から従うことが証明できた。またその他の応用として、水平なド・ラーム表現の特徴付け、兵頭治によるZp(n)(ただしnは整数)のガロワコホモロジーの計算の一般化を証明した。なお、剰余体のp基底が有限の場合のp進モノドロミー定理は、森田知真により証明されているが、上述の証明は森田の証明で用いられたAndreatta-Brinonの理論を必要としない、本質的に異なるものである。さらに、上記の応用はこれまでに知られていないものである。
|