• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Study of the Mathematical structure of singularities

Research Project

Project/Area Number 11214202
Research Category

Grant-in-Aid for Scientific Research on Priority Areas (B)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionThe University of Tokyo

Principal Investigator

MATANO Hiroshi  University of Tokyo, Graduate school of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (40126165)

Co-Investigator(Kenkyū-buntansha) MASUDA Kyuya  Meiji University, Faculty of Science and Technology, Professor, 理工学部, 教授 (10090523)
WEISS Georg  Graduate school of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (30282817)
FUNAKI Tadahisa  Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (60112174)
SHISHIKURA Mitsuhiro  Kyoto University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70192606)
YANAGIDA Eiji  Tohoku University, Graduate School Sciences, Professor, 大学院・理学研究科, 教授 (80174548)
Project Period (FY) 1999 – 2002
Keywordssingularity / singular perturbation method / singular limit / blow-up of solutions / nonlinear problems / dynamical systems / bifurcation theory / interface
Research Abstract

(1) Singular limit of diffusion equations In certain kinds of diffusion equations, transition layers appear as the diffusion coefficients tends to zero. Matano has studied the singular limit for diffusion equations with spatially inhomogeneous coefficients. Yanagida has used this singular limit technique to proved the existence of stable periodic solutions. Funaki has investigated the behavior of interfaces that appear in equations with random deviation.
(2) Blow-up in nonlinear heat equations Some blow-up solutions of nonlinear heat equations can be continued beyond the blow-up time in a certain sense. Matano has studied the dynamics of such blow-up solutions. Yanagida has obtained new formula for estimating the blow-up time.
(3) Singularities in free boundary problems Weiss has applies his new method obtain the Hausdorff dimension of the singularity set of a 2-phase obstacle problem.
(4) Singularities and bifurcation in comlex dynamical system Shishikura has obtained a new systematic method to study bifurcation problems and rigidity of Julia sets.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] H.Matano: "Existence of L^1 connections between equilibria of a semilinear parabolic equation"J. Dynamics and Differential Equations. 14. 463-491 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Funaki: "Fluctuations for ▽φ interface model on a wall"Stoch. Proc. Appl.. 94. 1-27 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Weiss: "An obstacle-problem-like equation with two phases: pointwise regularity of the solution and an estimate of the Hausdorff dimension"Interfaces and Free Boundaries. 3. 1-8 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E.Yanagida: "Existence of stable subharmonic solutions for reaction-diffusion equations"J. Differential Equations. 169. 255-280 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Shishikura: "Bifurcation of parabolic fixed points"London Math. Soc. Lect. Note Ser.. 274. 325-363 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Matano: "Existence of L^1 connections between equilibria of a semilinear parabolic equation"J. Dynamics and Differential Equations. 14. 463-491 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Funaki,: "Fluctuations for ▽φ interface model on a wall"Stoch. Proc. Appl.. 94. 1-7 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G.Weiss,: "An obstacle-problem-like equation with two phases : pointwise regularity of the solution and an estimate of the Hausdorff dimension"Interfaces and Free Boundaries. 3. 1-8 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E. Yanagida: "Existence of stable subharmonic solutions for Reaction-diffusion equations"J. Differential Equations. 169. 255-280 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Shishikura: "Bifurcation of parabolic fixed points"London Math. Soc. Lect. Note Ser. 274. 325-363 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi