• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Comprehensive study of differential equations

Research Project

Project/Area Number 11304006
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of Tokyo

Principal Investigator

YAJIMA Kenji  The University of Tokyo , Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (80011758)

Co-Investigator(Kenkyū-buntansha) MAJIMA Hideyuki  Ochanomizu University, Faculty of Sciences, Professor, 理学部, 教授 (50111456)
IKAWA Mitsuru  Kyoto University, Graduate School of Sciences, Professor, 大学院・数理科学研究科, 教授 (80028191)
NAKAMURA Shu  The University of Tokyo , Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (50183520)
TSUTSUMI Yoshio  Tohoku University, Graduate School of Sciences, Professor, 大学院・理学研究科, 教授 (10180027)
GIGA Yoshikazu  Hokkaido University, Graduate School of Sciences, Professor, 大学院・理学研究科, 教授 (70144110)
Project Period (FY) 1999 – 2001
KeywordsShrodinger equation / nonlinear PDE / linear PDE / nonlinear evolution equation / scattering theory / viscous solution / Navier-Stokes equation / Klein-Gordon equation
Research Abstract

We carried out an comprehensive study on linear and nonlinear partial and ordinary differential equations and obtained among others the following results:
1. Kenji Yajima and Shu Nakamura studied Schrodinger equations and obtained (1) the L^p-boundedness of wave operators of scattering and (2) the stability under subquadratic perturbations of the smooth and boundedness of fundamental solution; (3) clarified the relation between the local decay and the spectrum of Floquet operator for time periodic system; (4) constructed general theory of tunnenling in phase space and gave its applications; (5) defined the integrated density of states for random operators and proved Wegner estimates and the Lifschitz singularities.
2. Kiyoomi Kataoka studied the general theory of linear PDE and (1) gave an elementary definition of the holomorphic solutions complex of ε^R_x-modules and (2) reduced the branching of the singularities for Fuchsian elliptic boundary problems to that of the continuation of ODE.
3. Yoshikazu Giga studied nonlinear PDE and (1) gave a way to numerically compute the viscous solution of first order nonlinear PDE, (2) defined the proper visocous solutions and proved the existence and the uniquess of solutions and (3) proved the existence of solution of Navier-Stokcs equation with non-deaying initial conditions.
4. Yoshio Tsutsumi proved (1) the well-posedness of nonlinearly couples wave equations with different speeds, (2) the stability of constant solutions of nonlinear massive Klein-Gordon equation.
5. Hideyuki Majima produced new fundamental theorem on the asymptotic expansions from the point of view the super-asymptotic analysis.
6. Mitsuru Ikawa studied the scattering theory of wave equation by several convex bodies and obtained a precise asymptotic, formula for the poles of scattering matrix.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Yajima, K: "L^p-boundedness of wave operators for two Dimensional Schrodinger operators"Commun. Math. Physics. 208. 125-152 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Martinez, A.: "On the fundamental solution of semi-classical schrodinger equations at resenaut times"Commun. Math. Physics. 216. 357-373 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nakamura, S.: "Lifschitz tail for Schrodinger Operators Lvitti randam Magnetic field"Commun. Math. Physics. 214. 565-572 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kataoka, K.: "Formal symbol type solutions of Fuchsion microdifferential equations"J. Math. Sci. University of Tokyo. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Fukutani, S.: "Special polynomials cesscciated with the rational solutions and the Hirota bilinear relations…"Nagoya Math. Journal. 159. 179-200 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Giga, M.-H.: "Generalized motion by nonlocalcurvature in the plane"Arch. Rat. Mech. Anal. 159. 259-333 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jensen, Arne: "Ripples in Mathematics-The discrete wavelet transform"Springer-Verlag. 246 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] YAJIMA, Kenji: "L^p-boundedness of wave operators for two dimensional Schrodinger operaters"Commun. Math. Phys.. 208. 125-152 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Martinez, Andre and YAJIMA, Kenji: "On the fundamental solutions of semi-classical Schrodinger equations at resonant times"Commun. Math. Phys.. 216. 357-373 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] NAKAMURA, Shu: "Lifschitz tail for Schrodinger operators with random magnetic field"Commun. Math. Phys.. 214. 565-572 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KATAOKA, Kiyoomi: "Formal symbol type solutions of Fuchsian micro-differential equations"J. Math. Sci. Univ. Tokyo. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Fukutani, S.: "Special polynomials associated with the rational solutions and the Hirota bilinear relations of the 2nd and the 4th Painleve equations"Nagoya Math. J.. 159. 179-200 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] GIGA, M.-H.: "Generalizeed motion by nonlocal curvature in the plane"Arch. Rat. Mech. Anol.. 159. 259-333 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] JENSEN, A.: "Ripples in Mathematics - The discrete wavelet transform -"Springer-Verlag (Heidelberg-New York-Tokyo). 246 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi