• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Study of harmonic analysis and applications to partial differential equations

Research Project

Project/Area Number 11440037
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of Tokyo

Principal Investigator

ARAI Hitoshi  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (10175953)

Co-Investigator(Kenkyū-buntansha) KANJIN Yuichi  Kanazawa University, Faculty of Sciences, Professor, 工学部, 教授 (50091674)
OZAWA Toru  Hokkaido University, Graduate School of Sciences, Professor, 大学院・理学研究科, 教授 (70204196)
YAJIMA Kenji  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (80011758)
MORITO Shinya  Nara women's University, Faculty of Sciences, lecturer, 理学部, 講師 (30273832)
NOGUCHI Junjiro  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (20033920)
Project Period (FY) 1999 – 2001
KeywordsHarmonic functions / Negatively curved manifolds / Schrodinger equations / Nonlinear Schrodinger equations / Hardy spaces / Fourier multiplier / F.B.I transform / Bloch function
Research Abstract

Arai studied harmonic analysis on negatively curved manifolds. Let M be a complete, simply connected Riemannian manifold whose sectional curvatures K_M satisfy -∞ < -k^2_2 【less than or equal】 K_M 【less than or equal】 -k^2_1 < 0, where k_1 and k_2 are positive constants. Arai obtained several results on elliptic harmonic functions on M. In particular he established fundamental part of harmonic analysis on M by proving theorems related to Hardy spaces, BMO, VMO, Carleson measures, Green's potential. As applications, he also studied Bloch function theory on manifolds and the regularity problem of degenerate harmonic measures. Ozawa studied by using real variable method nonlinear Schrodinger equations, nonlinear wave equations and nonlinear Krein-Gordon equations. Yajima obtained some results on the fundamental solutions of Schrodinger equations. Kanjin proved Paley's inequality for Jacobi expansions and studied the Hausdorff operator acting on real Hardy spaces.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] H.Arai: "Hardy spaces, Carleson measures and a gradient estimate for harmenic functions on negatively curved manifolds"Advanced Studies in Pure Mathematics. 31. 1-49 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakamura: "Small solutions to nonlinear wave equations in the sobolor spaces"Houston J. Math.. 27. 613-632 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kanjin: "Paley's inequality for the Jacobi expansions"Bull. London Math. Soc.. 32. 483-491 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kanjin: "The Hausdorff operators on the real Hardy spaces H^p(R)"Studia Math.. 148. 37-45 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yajima: "On the behavior at intinity of the fundamental solution of the dime dependent Schrodinear equctions"Revies in Math. Phys.. 13. 891-920 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yajima: "Smoothing property for Schrodinger equations with potentials superquadratic at infinity"Comm. Math. Phys.. 221. 573-590 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 新井 仁之: "フーヘエ解析と関数解析学"培風館. 293+viii (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hitoshi Arai: "Hardy spaces, Carleson measures and a gradient estimate for harmonic function; on negatively curved manifolds"Advanced Stud. on Purer Macl.. 31. 1-49 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Nakamura: "Small solution to nonlinear wave equations in the Sobolev spaces"Houston J. Math. 2.7. 613-632 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kanjin: "Paley's inequality for the Jacobi expansions"Bull. London Math. Soe.. 32. 483-491 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kanjin: "The Hausdorff operations on the real Hardy spaces H(R)"Studia Math.. 148. 37-45 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yajima: "On the behavior at infinity of the fundamental solution of the time dependent Schrodinger equations"Rev. in Math. Phys.. 13. 891-920 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yajima: "Something property for Schrodinger equations with potentials Superquadratic at infinity"Commun. Math. Phys.. 22. 573-590 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Arai: "Fourier Analysis and Functional Analysis (Japanese book, Japanese title is "Fourier Kaiseki to Kansu Kaiski")"Baihukan Publ.. 293 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi