• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Multilateral research of stochastic analysis in infinite dimensional spaces

Research Project

Project/Area Number 11440045
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

SHIGEKAWA Ichiro  Graduate School of Science, Kyoto University, Professor, 大学院・理学(系)研究科(研究院), 教授 (00127234)

Co-Investigator(Kenkyū-buntansha) HINO Masanori  Graduate School of Informations, Kyoto University, Lecturer, 大学院・情報学研究科, 講師 (40303888)
NOMURA Takaaki  Graduate School of Science, Kyoto University, Associate Professor, 大学院・理学(系)研究科(研究院), 助教授 (30135511)
YOSHIDA Nobuo  Graduate School of Science, Kyoto Univesity, Lecturer, 大学院・理学(系)研究科(研究院), 講師 (40240303)
AIDA Shigeki  Graduate School of Engineering, Associarte Prefessor scinece, Osaka University, 大学院・基礎工学研究科, 助教授 (90222455)
UEKI Naomasa  Graduate School of Human and Enviornmental Studies, Kyoto University, Associate Professor, 大学院・人間環境学研究科, 助教授 (80211069)
Project Period (FY) 1999 – 2001
Keywordssemigroup domination / interturning property / square field operator / Littlewood-Paley ineguality / multiplier / second fundamental form / Hodge-Kodaira opoerator / logarithmic Sobolev ineguality
Research Abstract

We have accomplished the research of the semigroup domination and the intertwining property of semigroups. The semigroup domination stands for that |T^^→_tu|【less than or equal】T_t|u| holds for semigroup T^^→_t and T_t. Here u are supposed to be a vector valued function. Typical example is a differential form on a Riemannian manifold. The characterization in terms of the generator is known. We give here a sufficient condition in terms of square field operator. Crucial assumptions are the positivity and the locality. Intertwining property is the following property: for two generator L, L^^→, it holds that DL = L^^→D + R. We give necessary and sufficient conditions in terms of the semigroup and the resolvents. Our aim has been to reconstruct the.Bakry-Emery T_2 theory but we have succeeded in including diffusion processes with boundary condition and it gives a generalization of Bakry-Emery T_2 theory.
For application, we can make use of them to show the Littlewood-Paley inequality and the L^p multiplier theorem. In fact, we have considered the Brownian motion on an Riemannian manifold with boundary and show the Littlewood-Paley inequality for it under the assumption of positivity of the second fundamental form of the boundary. Making use of this, we can show the L^p boundedness of the Riesz transformation. L^p multiplier theorem is to give an sufficient condition on φ and A so that φ(A) is a bounded operator on L_p. Stein showed this for a generator of a symmetric diffusion process with φ being of Laplace transform type. We have shown that the same result holds for the Hodge-Kodaira operator on a Riemannian manifold.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Ichiro Shigekawa: "Semigroup domination on a Riemannian manifold with boundary"Acta Applicandae Math.. 63. 385-410 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ichiro Shigekawa: "The domein of a generator and the intertwining property"Stochastics in Finite and Infinite Dimensions. 401-410 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ichiro Shigekawa: "Littlewood-Paley inequality for a diffusion sastisfying the logarithmic Sobolev inequality and for the Brownian motion on a Riemannian manifold with boundary"Osaka J. Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nobuo Yoshida: "The log-Sobolev inequality for weakly coupled lattice fields"Probab. Th. Rel. Fielsds. 115. 1-40 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masanori Hino: "Exponential decay of positivity preserving semigroups on L^p"Osaka J. Math.. 37. 603-624 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Naomasa Ueki: "Asymptotic expansion of stochastic osillatory integrals with rotation invariance"Ann. Inst. H. Poincare Probab. Statist.. 35. 417-457 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ichiro Shigekawa: "Semigroup domination on a Riemannian manifold with boundary"Acta Applicandae Math.. 63. 385-410 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ichiro Shigekawa: "The domain of a generator and the intertwining property"Stockastics in Finite.and Infinite Dimensions,ed. by T. Hida et al, Birkhaeauser, Boston. 401-410 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ichiro Shigekawa: "Littlewood-Paley inequality for a diffusion satisfying the logarithmic Sobolev inequality and for the Brownian motion on a Riemanhian manifold with boundary"Osaka J. Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nobuo Yoshida: "The log-Sobolev inequality for weakly coupled lattice fields"Probab. Th. Rel. Fields 1. 151. 1-40 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masanori Hino: "Exponential decay of podsitivity preserving semi-groups on L^p"Osaka Journal of Mathematics. 37. 603-624 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Naomasa Ueki: "Asymptotic expansion of stochastic oscillatory integrals with rotation invariance"Ann. Inst. H. Poincare Probab. Statist. 35. 417-457 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi