• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Affine Lie algebra characters and Bethe Ansatz

Research Project

Project/Area Number 11640027
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

OKADO Masato  Graduate School of Engineering Science, Osaka University, Associate Prof., 大学院・基礎工学研究科, 助教授 (70221843)

Co-Investigator(Kenkyū-buntansha) KUNIBA Atsuo  Univ. of Tokyo, Graduate School of Arts and Sciences, Associate Prof., 大学院・総合文化研究科, 助教授 (70211886)
NAGAI Atsushi  Graduate School of Engineering Science, Osaka University, Research Associate, 大学院・基礎工学研究科, 助手 (90304039)
OGAWA Toshiyuki  Graduate School of Engineering Science, Osaka University, Associate Prof., 大学院・基礎工学研究科, 助教授 (80211811)
TSUJIMOTO Satoshi  Kyoto Univ., Graduate School of Informatics, Lecturer, 大学院・情報学研究科, 講師 (60287977)
Project Period (FY) 1999 – 2001
KeywordsAffine Lie algebra / quantum group / integrable system
Research Abstract

In this research, we have investigated affine Lie algebra characters using a method in solvable lattice models, Bethe Ansatz. We also obtained important results on cellular automata which had not been predicted at the beginning of the project.
1. Fermionic formula. Fermionic formula is a polynomial with positive integer coefficients arising from combinatorics of Bethe Ansatz. We conjectured that this polynomial gives the branching function of an integrable representation of an affine Lie algebra, and considered its evidence using the crystal theory in quantum group. We also proved this conjecture in several cases.
2. Combinatorics of Bethe Ansatz. Besides fermionic formulae, there is an important sysmtem of algebraic equations, called Q-system, in combinatorial studies of Bethe Ansatz. Kuniba, with Nakanishi et al., obtained a solution of this Q-system from Bethe equations at q = 0.
3. Soliton cellular automaton. Although this research was not in our mind at the beginning, there was a new progress by us in the studies of soliton sellular automata. A cellular automaton is defined from the crystal of a finite dimensional representation of a quantum affine algebra. We showed that the motion of solitons in this cellular automaton factorizes into the product of 2-body ones and their scattering rule is explicitly given using the combinatorial R of finite crystals.
4. Discrete integrable systems. The above mentioned soliton cellular automaton in the case of affine Lie algebra An^<(1)> has been known to be obtained from the ultra discrete limit of the nonautonomous discrete KP equation. Nagai et al. proved the solitonical nature and constructed conserved quantities from this approach.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] G.Hatayama et al.: "Remarks on fermionic formula"Contemporary Mathematics. 248. 243-291 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Hatayama et al.: "Scattering rules in soliton cellular automata associated with crystal bases"Contemporary Mathematics. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa: "Periodic travelling waves and their modulation"Japan Journal of Industrial and Applied Math. 18. 521-542 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Nagai et al.: "Conserved quantifies of box and ball system"Glasgous Mathematical Journal. 43A. 91-98 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kuniba et al.: "The Canonical Solutions of the Q-Systems and the Kirillov-Reshetikhin Conjecture"Commun. Math. Phys.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Hirota et al.: "Soliton equations exhibiting pfaffian solutions"Glasgow Math. Journal. 43A. 33-41 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada: "Remarks on fermionic formula"Contemp. Math.. 248. 243-291 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada: "Scattering rules in soliton cellular automata associated with crystal bases"Contemp. Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Z. Tsuboi: "Paths, crystals and fermionic formulae""MathPhys. Odyssey", M. Kashiwara and T. Miwa editors, Birkhauser. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Ogawa: "Periodic traveling waves and their modulation"Japan Journal of Industrial and Applied Mathematics. Vol. 18 No. 2. 521-542 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Nagai, T. Tokihiro, J. Satsuma: "Conserved quantities of box and ball systems"Glasgow Mathematical Journal. 43A. 91-98 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. Hatayama, K. Hikami, R. Inoue, A. Kuniba, T. Takagi and T. Tokihiro: "The A_M^<(1)> automata related to crystals of symmetric tensors"J. Math. Phys.. 42. 274-308 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kuniba, T. Nakanishi and Z. Tsuboi: "The canonical solutions of the Q-systems and the Kirillov-Reshetikhin conjecture"Commun. Math. Phys.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Hirota, M. Iwao and S. Tsujimoto: "Soliton equations exhibiting "Pfaffian Solutions""Glasgow Math. J.. Vol. 43A. 33-41 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi