• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Special Linear Linear Systems on Algebraic Curves

Research Project

Project/Area Number 11640032
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokushima

Principal Investigator

OBBUCHI Akira  The University of Tokushima Faculty of Integrated Arts and Sciences, Ass.Prof., 総合科学部, 助教授 (10211111)

Co-Investigator(Kenkyū-buntansha) HOMMA Masaaki  Kanagawa U., Faculty of Engineering, Prof., 工学部, 教授 (80145523)
KATO Takao  Yamaguchi U., Faculty of Science, Prof., 理学部, 教授 (10016157)
Project Period (FY) 1999 – 2000
KeywordsAlgebraic Curve / Linear System / Line Bundle
Research Abstract

First, we have some result about normal generation of a line bundle L on a curve C (T.Kato, C.Keem and Ohbuchi), i.e. Green-Lazarsfeld says that if degL 【greater than or equal】 2g+2-Cliff (C), then L is normally generated, equivalently if L does not contribute to Clifford index, then L is normally generated. We get some sufficient condition of normal generation for a line bundle which contributes to a Clifford index. Next, we classify smooth projective algebraic curves C of genus g such that the variety of special linear systems W^2_<g-1> (C) has dimension g-7. We can prove that if W^2_<g-1> (C) has dimension g-7 【greater than or equal】 0 then C is either trigonal, tetragonal, a double covering of a curve of genus 2 or a smooth plane sextic. This result is an extension of H.Martens and D.Mumford Theorem. And we can classify curves in which W^2_<g-1> (C) has dimension g-7. The result is that dimW^2_<g-1> (C)=g-7 is equivalent to the following conditions according to the values of the ge … More nus g.
(i) C is either a trigonal curve or a double covering of a curve of genus two for g【greater than or equal】11.
(ii) C is either trigonal, a double covering of a curve of genus 2 or a smooth plane curve degree 6 for g=10.
(iii) C is either trigonal, a double covering of a curve of genus 2, a tetragonal curve with a smooth model of degree 8 in P^3 or a tetragonal curve with a plane model of degree 6 for g=9.
(iv) C is either trigonal or has a birationally very ample g^2_6 for g=8 or g=7.
And furthermore we have some result about Castelnuovo-Mumford type inequality. We consider m (L) : =min{m|h^1(X, L^<(【cross product】)m>)=0}. It is easy that m(L)【less than or equal】[(d -1)/(r-1)], and we can conclude that m(L)【less than or equal】d-r for any birationally very ample invertible sheaf L, moreover equality holds if and only if the curve is a smooth plane curve and L=O(1). From this result, we can consider an invariant θ(L) : =deg L-r(L)-m(L) for any birationally very ample invertible sheaf L.We can classift a curve C and a line bundle L which satisfies θ(L)=1. Less

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Kato,T.: "G.Martens' dimension theorem for curves of odd gonality"Geom Dedicata. 78. 301-313 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kato,T: "A normal generation of line bundles of high degrees on smooth algebraic curves"Abh.Math.Sem.Hamburg. 69. 319-333 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Homma,M.: "Singular hyperelliptic curves"Manuscripta Math.. 98. 21-36 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Homma,M: "A variant of a base point free pencil trick and linear systems on a plane curve"J.Korean.Math.Soc.. 36. 567-580 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kato,T.: "Weierstrass weights of points on the Fermat curve"Kyushu J.Math.. 54. 273-278 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Cho,K-H,: "A variety of special linear system of degreve g-1 on double covering of a smooth plane quartic of gem 9"Proc.of the second ISAAC.cong.. vol2. 971-986 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kato, T.: "G.Martens' dimension theorem for curves of odd gonality"Geom.Dedicata. 78. 301-313 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kato, T.: "Normal generation of line bundles of high degrees on smooth algebraic curves"Abh.Math.Sem.Hamburg. 69. 319-333 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Homma, M.: "Singular hyperelliptic curves"Manuscripta Math.. 98. 21-36 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Homma, M.: "A variant of a base-point-free pencil trick and linear systems on a plane curve"J.Korean Math.Soc.. 36. 567-580 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kato, T.: "Weierstrass weights of points on the Fermat curve"Kyushu J.Math.. 54. 273-278 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kato T.: "Projective systems whose supports consist of the union of three linear"subspaces. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kato, T.: "A characterization of the Fermat curve"Kato, T., Normal generation of line bundles of high degrees on smooth algebraic curves. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Homma, M.: "Projective systems supported on the complement of two linear subspaces"Bull.Korean Math.Soc.. 37. 493-505 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Homma, M.: "Goppa codes supported by two points on a curve"Proceedings of the second ISAAC congress H.G.W.Begehr, R.P.Gilbert and J.Kajiwara (Eds.) Kluwer Academic Publishers, Dordrecht-Boston-London. Vol. 2. 955-965 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Cho, K-H.: "A.Variety of special nets of degree g-1 on double coverings of a smooth plane quartic of genus 9"Proceedings of the second ISAAC congress H.G.W.Begehr, R.P.Gilbert and J.Kajiwara (Eds.) Kluwer Academic Publishers, Dordrecht-Boston-London. Vol. 2. 971-986 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi