• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Research in Functional Analsys and Mathematical theory of Feynman path integrals.

Research Project

Project/Area Number 11640180
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionGakushuin University

Principal Investigator

FUJIWARA Daisuke  Gakushuin Univ.Dept.of Math.Prof., 理学部, 教授 (10011561)

Co-Investigator(Kenkyū-buntansha) MIZUTANI Akira  Gakushuin Univ.Dept.of Math.Prof., 理学部, 教授 (80011716)
KATASE Kiyoshi  Gakushuin Univ.Dept.of Math.Prof., 理学部, 教授 (70080489)
KURODA Shigetoshi  Gakushuin Univ.Dept.of Math.Prof., 理学部, 教授 (20011463)
SUGANO Satoko  Gakushuin Univ.Dept.of Math.Assist., 理学部, 教授 (50316931)
WATANABE Kazuo  Gakushuin Univ.Dept.of Math.Assist., 理学部, 助手 (90260851)
Project Period (FY) 1999 – 2000
KeywordsFeynman path integrals / Oscillatory integrals / Schrodinger equation / Stationary phase / Selfajoint operator / Quantum mechanics / WKB-method / path integrals
Research Abstract

1. Fujiwara tried to give mathematically rigorous treatment of Feynman path integrals. It may seem possible to get a new proof of Kumanogo-Taniguchi theorem for actions with electro-magnetic fields if we cleverly conbine N.Kumanogo's method to that of our work which were published in 1997. Fujiwara wrote a textbook published by Springer Verlarg Tokyo in 1999. The english translation of the title is "Mathematical Method of Feynman path integrals".
2. S.T.Kuroda together with P.Kurasov of Stockholm University showed that the Krein's formula describing relations of self-adjoint extension of two operators can be understood as resolvent equation between two operators. And they dicussed H_∈-perturbation theory.
3. Mizutani studied finite element methods for parabolic nonlinear partial differential equations.
4. Watanabe togeher with Kurasov of Stockholm Univ. studied H_4 realization of selfadjoint extension of operators.
5. Sugano together with Kurata of Metropolitan Univ. studied fundamental solutions of uniformly elliptic operators with potentials in a class of functions which is a generalization of the class of positive polynomials. They suceeded in proving their fundamental solutions show good behviour in the weighted L^p space and Morrey classes. Using these facts, they proved a good estimates of distribution of eigen values and sharp information for order of decay of eigen functions of their elliptic operators.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] S.T.Kuroda and P.Nagatani: "H_∈-construction and some applications"Operator Theory. 108. 99-105 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.T.Kuroda and P.Kurasov: "Krein's formula and perturbation theory"Research report in Math.Depart.Stockholm Univ.. 6. (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Watanabe and P.Kurasov: "On H_△-perturbation of self-adjoint operators."Research report in Math.Depart.Stockholm Univ.. 16. 1-18 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Sugano and K.Kurata: "A remark of estimates for uniformly elliptic operators on weighted L^p spaces and Morrey spaces."Maht.Nachrich.. 209. 137-150 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Sugano and K.Kurata: "Fundamental solution, eigenvalueasymptotics and eigenfunctions of degenerate elliptic operators with positive potentials,"Studia Math.. 138. 101-119 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Sugano,K.Kurata and S.Nishigaki: "Boundedness of integral operators on generalized Morrey spaces and its application to Schrodinger operators,"Proc.Amer.Math.Soc.. 128. 1125-1134 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤原大輔: "ファインマン経路積分の数学的方法-時間分割近似法-"シュプリンガーフェアラーク・東京. 275 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.T.Kuroda (with N.nagatani): "H_∈-construction and some applications"Operator Theory. 108. 99-105 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.T.Kuroda (with P.Kurasov): "Krein's formula and perturbation theory"Research report in Math.Depart.Stockholm Univ.. 6. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Watanabe (with P.Kurasov): "On H_Δ-perturbation of self-adjoint operators"Research report in Math.Depart. Stockholm Univ.. 16. 1-18 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Sugano (with K.Kurata): "A remark of estimates for uniformly elliptic operators on weighted L^p spaces and Morrey spaces"Math.Nachrich. 209. 137-150 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Sugano (with K.Kurata): "Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic opeartors with positive potentials"Studia Math. 138. 101-119 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Sugano (with K.Kurata and S.Nishigaki): "Boundedness of integral operators on generalized Morrey spaces and its application to Schrodinger operations"Proc.Amer.Math.Soc.. 128. 1125-1134 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Sugano (with K.Kurata): "Estimates of the fundamental solution for magnetic Schrodinger operators and their applications"Tohoku Math.J.. 52. 367-382 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] D.Fujiwara: "Mathematical methods for Feynman path integrals-time slicing approximataion-"Springer Verlag, Tokyo (In Japanese). 1-275 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi