2013 Fiscal Year Annual Research Report
走査型カー回転分光によるシリコン中の空間電荷効果の検出
Project/Area Number |
11F01358
|
Research Institution | Osaka University |
Principal Investigator |
白石 誠司 大阪大学, 大学院基礎工学研究科, 教授
|
Co-Investigator(Kenkyū-buntansha) |
DELMO Michael Picazo 大阪大学, 大学院基礎工学研究科, 外国人特別研究員
|
Keywords | 磁気抵抗効果 / 空音電化効果 / P型シリコンへの電子注入 / 磁場による電子・ホール密度比制御 |
Research Abstract |
本研究の目的は、走査型カー回転分光とスピン注入を用いてシリコン中の空間電荷効果(電子密度・電場の不均一性)を検出し、シリコンで空間電荷によって誘起される大きな磁気抵抗効果のメカニズムを明らかにすることにある。平成23年度(1年目)の計画の引き続きでシリコンデバイスの作製を行いつつ、空間電荷効果と磁気抵抗効果の評価を行い、実験を確立する。そして、今年度(2年目)から三端子のシリコンデバイスを作製し、シリコンデバイスへのスピン注入と検出の実験を行う予定だったが、p型シリコンで低磁場において大きな磁気抵抗効果が発現することを発見したため、この新発見の起源とメカニズムを明らかにするために今年度の実験を進めてきた。p型シリコンは、高抵抗でキャリア密度が約2×10^<12>cm^<-3>)であり、インジウム電極とオーミックコンタクトを作製して高電圧を印加すると、p型シリコンに電子注入が可能になる。その伝導領域は空間電効果が支配的であり、磁気抵抗効果を測定すると、低磁場(250millitesla以下)でもp型シリコンは磁気抵抗が約80%にもなり、しかも磁場の変化に対して磁気抵抗がリニアに変化することがわかった。その大きな磁気抵抗効果は、メカニズムが磁場による電子・ホールキャリア密度比制御であり、p型シリコン中に注入した電子の拡散は磁場の印加によって抑制されるとわかった。このメカニズムはこの研究で初めて明らかになった[1]。さらに、この磁気抵抗かは、スピンデバイスの巨大磁気抵抗効果(GMR)と匹敵する大きさで、低磁場センサーへの応用に期待を集めている。
|
Strategy for Future Research Activity |
(抄録なし)
|