• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

A STUDY ON THE GEOMETRY OF MODULI SPACES

Research Project

Project/Area Number 12304001
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

NAKAMURA Iku  Hokkaido Univ., Grad.School of Sci., Prof., 大学院・理学研究科, 教授 (50022687)

Co-Investigator(Kenkyū-buntansha) KATSURA Toshiyuki  Tokyo Uiv., Grad.School of Math.Sci., Prof., 大学院・数理科学研究科, 教授 (40108444)
SHINODA Ken-ichi  Sophia Univ., Fac.of Sci and Tech., Prof., 理工学部, 教授 (20053712)
SUWA Tatsuo  Hokkaido Univ., Grad.School of Sci., Prof., 大学院・理学研究科, 教授 (40109418)
NAKAJIMA Hiraku  Kyoto Univ., Grad.School of Sci., Prof., 大学院・理学研究科, 教授 (00201666)
SAITO Masahiko  Kobe Univ., Fac.of Sci., Prof., 理学部, 教授 (80183044)
Project Period (FY) 2000 – 2003
KeywordsAbelian variety / Moduli / Compactification / McKay correspondence / Theta function / Calabi-Yau Manifolds / Coinvariant algebra / Quiver variety
Research Abstract

Certain compactification of moduli space of abelian varieties was studied as well as moduli spaces of G-orbits for a finite subgroup G of SL(2,C) and SL(3,C). The main issues we have in mind are as follows (a) Study of a resolution of singularity of the quotient C^3/G as a moduli space (b) study of Kempf stability and compactification of moduli spaces (c) A canonical ompactification SQ_<g,N> of the moduli A_<g,N> over Z[1/N] of abelian varieties and related moduli.
There were remarkable progresses on each subject during this project. The main results are as follows : first there was a remarkable progress in the study on Hilbert schemes of G-orbits. We copuld give a new explanation to the phenomenon of McKay correspondence which was discovered over twenty years, and extending it to the three dimensional case, we obtained a lot of new resluts. The head investigator (Nakamura) proposed a generalization of McKay correspondence to the three or higher dimension, which was follows by many related results. In this sense this project payed a substantial role in the history of studying McKay correspondence. Among other things Nakamura showed that the Hilbert scheme of G-orbits is the canonical resolution of singularities of the quotient C^3/G. This is a new discovery which has never been observed, against the common sense in minimal model theory. Therefore this discovery has been accepted by specialists with surprise. Another substantial contribution of this project is that we constructed a new canonical compactification of moduli space A_<g,N> of abelian varieties This compactification is projective, it enjoys a desirable property as a compactification. From the stabdpoint of invariant theory, this compactification is ust that by stability. In this sense it is orthodox and is uniquely characterized by this property

  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] T.Katsura: "On the height of Calabi-Yau varieties in positive characteristic"Documenta Math.. 8. 97-113 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Katsura: "An invariant for varieties in positive characteristic"Contemporary Math.. 300. 131-141 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Katsura: "Formal Brauer groups and a stratification of the moduli of abelian surfaces"Progress in Math.. 195. 185-202 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakajima: "Quiver varieties and finite dimensional representations of quantum affine algebras"Jour.Amer.Math.Soc.. 14. 145-238 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakajima: "Quiver varieties and tensor products"Invent.Math.. 146. 399-449 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakajima: "McKay correspondence and Hilbert schemes in dimension three"Topology. 39. 1155-1191 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakajima: "箙多様体と量子アファイン環"数学(岩波書店). 52. 337-359 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I.Nakamura: "Coinvariant algebras of finite subgroups of SL(3,C)"Canadian Jour.Mathematics. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I.Nakamura: "平面3次曲線…HesseからMumfordへ"数学(岩波書店). 53. 17-34 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I.Nakamura: "Moduli space of elliptic curves with Heisenberg level structure"Progress in Math.. 195. 299-324 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I.Nakamura: "Hilbert schemes of G-orbits in dimension three"Asian J.Math.. 4. 51-70 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.-H.Saito: "Backlund transformations of the Sixth Painleve Equations"Internat.Math.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Shimada: "On the Zariski-van Kampen theorem"Canada.Jour.Math.. 55. 133-156 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Shinoda: "Zeta functions and functional equations associated with Gelfand-Graev"Advanced Studies in Pure Math.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Katsura: "On the height of Calabi-Yau varieties in positive characteristic"Documenta Math.. vol.8. 97-113 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Katsura: "An invariant for varieties in positive characteristic"Contemporary Math.. vol.300. 131-141 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Katsura: "Formal Brauer groups and a stratification of the moduli of abelian surfaces"Progress in Math.. vol.195. 185-202 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakajima: "Quiver varieties and finite dimensional representations of quantum affine algebras"Jour.Amer.Math.Soc.. vol.14. 145-238 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakajima: "Quiver varieties and tensor products"Invent.Math.. vol.146. 399-449 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakajima: "McKay correspondence and Hubert schemes in dimension three"Topology. vol.39. 1155-1191 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakajima: "Quiver varieties and qunatum enveloping algebra"Sugaku. vol.52. 337-359 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I.Nakamura: "Coinvariant algebras of finite subgroups of SL(3,C)"Canadian Jour.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I.Nakamura: "Planar cubic curves -From Hesse to Mumford(Iwanami publisher)"Sugaku. vol.53. 17-34 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I.Nakamura: "Moduli space of elliptic curves with Heisenberg level structure"Progress in Math.. vol.195. 299-324 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I.Nakamura: "Hilbert schemes of G-orbits in dimension three"Asian J.Math.. Vol.4. 51-70 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.-H.Saito: "Backlund transformations of the Sixth Painleve Equations"Internat.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shimada: "On the Zariski-van Kampen theorem"Canad.Jour.Math.. Vol 55. 133-156 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shinoda: "Zeta functions and functional equations associated with Gelfand-Graev"Advanced Studies in Pure Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi