• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Geometric invariant, propagation of singularity and asymptotic behavior for nonlinear wave equations

Research Project

Project/Area Number 12440033
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTohoku University

Principal Investigator

TSUTSUMI Yoshio  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (10180027)

Co-Investigator(Kenkyū-buntansha) ARISAWA Mariko  Graduate School of Information Science, Associate Professor, 大学院・情報科学研究科, 助教授 (50312632)
NAGASAWA Takeyuki  Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70202223)
KOZONO Hideo  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00195728)
MIZUMACHI Tetsu  Faculty of Science, Yokohama City University, Associate Professor, 理学部, 助教授 (60315827)
OHTA Masahito  Faculty of Science, Saitama University, Associated Professor, 理学部, 助教授 (00291394)
Project Period (FY) 2000 – 2002
Keywordsnull condition / Dirac-Proca equations / Maxwell-Higgs equations / global existence in time / well-posedness / modified KdV equation / initial value problem / weak solution
Research Abstract

It is well known that there are close relations between the regularity of solutions and the geometric invariant for nonlinear wave equations. Especially, the null condition introduced by Klainerman and Christodoulou often plays an important role in the case of relativistic nonlinear wave equations. From this point of view, in the acadimic years of 2000 and 2001, we studied the global existence of solutions for the Cauchy problem of the Dirac-Proca equations and the Maxwell-Higgs equations. We first showed that the Proca equation has a null condition structure, which led to the global existence of solution for small and smooth initial data. We next discovered that the Maxwell-Higgs equations generically have a null condition structure, which enabled us to show the global existence of solution for small and smooth initial data
In the academic year of 2002, we studied the well-posedness of the Cauchy problem for the modified KdV equation in a weak class. It is known that when s< 1/2, the solution map is not in C^2, while it is in C^∞ for s > 1/2. We studied what kind of structure for the modified KdV equation breaks down the well-posedness in a weak class

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Y.Tsutsumi: "Stability of constant equilibrium for the Maxwell-Higgs equations"Funkcialaj Ekvacioj. 46. 41-62 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Tsutsumi: "Global solutions for the Dirac-Proca equations with small initial data in 3+1 space time dimensions"J. Math. Anal. Appl.. 278. 485-499 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Hirose, M.Ohta: "Structure on positive radial solutions to scalar field equations with harmonic potential"J. Diff. Eqs.. 178. 519-540 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hayashi, T.Mizumachi, P.I.Naumkin: "Time decay of small solutions to quadratic nonlinear schrodinger equations in 3D"Diff. Integr. Eqs.. 16. 159-179 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kozono: "Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains"Math. Ann.. 320. 709-730 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ozawa, K.Tsutaya, Y.Tsutsumi: "On the coupled system of nonlinear wave equations with different propagation speeds"Banach Center Publications Series. 52. 181-188 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y,Tsutsumi: "Stability of constant equilibrium for the Maxwell-Higgs equations"Funkcialaj Ekvacioj. 46. 41-62 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Tsutsumi: "Global solutions for the Dirac-Proca equations with small initial data in 3 + 1 space time dimensions"J. Math. Anal. Appl. 278. 485-499 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Hayashi, T.Mizumachi,P.I.Naumkin: "Time decay of small solutions to quadratic nonlinear Schrodinger equations in 3D"Diff. Integr. Eqs. 16. 159-179 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Hirose, M.Ohta: "Structure of positive radial solutions to scalar field equations with harmonic potential"J. Diff. Eqs. 178. 519-540 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kozono: "Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains"Math,Ann. 320. 709-730 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ozawa, K.Tsutaya, Y.Tsutsumi: "On the coupled system of nonlinear wave equations with different propagation speeds"Banach Center Publications Series. 52. 181-188 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi