2001 Fiscal Year Annual Research Report
論理指向ニューラルネットワークを利用したパターン認識システムのハードウェア実装
Project/Area Number |
12780239
|
Research Institution | Hiroshima City University |
Principal Investigator |
神尾 武司 広島市立大学, 情報科学部, 助手 (20316136)
|
Keywords | 論理指向ニューラルネットワーク / 多層パーセプトロン / スパース結合ニューラルネットワーク / ハイブリッドシステム / 連想メモリ / パターン認識 |
Research Abstract |
今年度の研究計画に従って、論理指向ニューラルネットワーク(LOGO-NN)をVHDLによって設計し、FPGA上へのハードウェア実装を試みた。その作業過程を通じて、比較的簡単なパターン認識に対しては高性能なLOGO-NNを低コストでハードウェア化できることが確認された。しかし、問題の難易度が高くなるにつれて、LOGO-NNに必要となるデータビット数とニューロン数は増加し、十分なコスト削減が難しいことも確認された。 そこで、この問題を回避するために、LOGO-NNと連想メモリを併用したパターン認識システムを新たに考案した。連想メモリは入力パターンを修復する能力があるため、低コスト化によってLOGO-NN単体の性能がある程度低くなったとしても、システム全体で高いパターン認識率を維持できることは明らかであり、さらに、それをシミュレーションによって確認することができた。また、連想メモリは多層パーセプトロン(MLP)とスパース結合ニューラルネットワーク(SINN)を組み合わせて構成した。ここで、MLP部はLOGO-NNによって実現することで低コスト化を図った。一方、SINN部はハードウェア化が容易なモデルとして知られるセルラーニューラルネットワーク(CNN)を基に構成した。したがって、連想メモリ自体の低コスト化も十分に達成することができた。 このように今年度の研究では、LOGO-NNと連想記憶MLP-SINNを組み合わせることによって、本研究の目的であるLOGO-NNを利用した高性能なパターン認識システムが低いハードウェアコストで実現されることを示すことができた。今後の課題は、このパターン認識システムをLSI上に実装することで、より大規模な問題に対応できるようにすることなどが挙げられる。
|
Research Products
(5 results)
-
[Publications] 神尾武司: "3値荷重MLPとSINNから構成されるハイブリッド連想記憶システム"電子情報通信学会技術研究報告. NC2000-134. 47-54 (2001)
-
[Publications] Takeshi Kamio: "Auto-Associative Memories Composed of Multilayer Perceptrons and Sparsely Interconnected Neural Networks"Proceedings of the ITC-CSCC 2001. 2. 1276-1279 (2001)
-
[Publications] Takeshi Kamio: "Associative Memories Composed of Multilayer Perceptrons with 3-Valued Weights and Sparsely Interconnected Neural Networks"Proceedings of the ICONIP 2001. 2. 591-596 (2001)
-
[Publications] Takeshi Kamio: "Associative Memories Using Interaction between Multilayer Perceptrons and Sparsely Interconnected Neural Networks"IEICE Trans. Fundamentals. (to appear). (2002)
-
[Publications] 神尾武司: "再帰的多層パーセプトロンとスパース結合ニューラルネットワークによる自己連想記憶システム"電子情報通信学会技術研究報告. (to appear). (2002)