• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Geometry of Moduli Spaces and Galois Actions

Research Project

Project/Area Number 13440005
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHIROSHIMA UNIVERSITY (2002-2003)
Kyoto University (2001)

Principal Investigator

MATSUMOTO Makoto  Hiroshima University, Graduate Scholl of Science, Professor, 大学院・理学研究科, 教授 (70231602)

Co-Investigator(Kenkyū-buntansha) TSUZUKI Nobuo  Hiroshima University, Graduate Scholl of Science, Associate Professor, 大学院・理学研究科, 助教授 (10253048)
MOCHIZUKI Shinichi  Kyoto University, RIMS, Professor, 数理解析研究所, 教授 (10243106)
TAMAGAWA Akio  Kyoto University, RIMS, Professor, 数理解析研究所, 教授 (00243105)
SHIGEYUKI Morita  Tokyo University, Graduate School of Mathematical Sciences, Professor, 数理科学研究科, 教授 (70011674)
KIMURA Shunichi  Hiroshima University, Graduate Scholl of Science, Associate Professor, 大学院・理学研究科, 助教授 (10284150)
Project Period (FY) 2001 – 2003
KeywordsGalois group / arithmetic fundamental group / moduli space / mapping class group / motive / categorical arithmetic geometry / arithmetic geometric topoglogy
Research Abstract

We investigated arithmetic geometry using a nonabelian invariant, the fundamental group. Head investigator proved the following : the derivation Lie algebra of Galois action on the fundamental group of projective line minus three points is generated by the Soule elements. This solves the generation conjecture by Deligne and Ihara. The result was published in Compositio Mathematicae. Using a similar construction, Head investigator proved the following result on the action of the arithmetic fundamental group of the moduli space on the fundamental group of curves. The image of the action of the absolute Galois group on the unipotent fundamental group of a curve C is maximal, if and only if the algebraic cycle C-C^-in the Jacobian of C has non-torsion image by l-adic Abel Jacobi map in the Galois cohomology. The result is to appear in J. Inst. Math. Jussieu. Tamagawa researched the reconstruction of a curve in the positive characteristic case from its geometric fundamental groups. He proved that it is possible if genus is zero, and is possible up to finite isomorphic classes in a general case. The result was published in J. Alg. Geom. Mochizuki is generalizing the anabelian geometry which reconstructs a scheme from its etale fundamental group, and is constructing a theory of categorical arithmetic geometry, which is expected to have a good contribution to ABC conjecture. Tsuzuki established the descent theory of the rigid cohomology and prove the finiteness of its dimension and degeneration of the weight spectral sequences. The result is published in Rend. Sem. Mat. Univ Padova. Kimura defined the notion of finite dimensionality of pure motives using symmetric and exterior products, and proved them in the case of curves. S. Morita made a good advance towards Faber's conjecture on the cohomology ring of the moduli space. The result was published in Topology.

  • Research Products

    (54 results)

All Other

All Publications (54 results)

  • [Publications] R.Hain: "Weighted completion of Galois groups and Galois actions on the fundamental group of P^1{0,1,∞}"Compositio Mathematicae. 139-2. 119-167 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Hain: "Tannakian fundamental groups associated to Galois groups"MSRI Publications. 41. 183-216 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Hain: "Galois actions on fundamental groups of curves and the cycle C-C-"Journal of the Institute of Mathematics Jussieu. (to appear in).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Tamagawa: "Ramification of torsion points on curves with ordinary semi-stable Jacobian varieties"Duke Mathematical Journal. 106,No.2. 281-319 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Tamagawa: "Fundamental groups and geometry of curves in positive characteristic"Proc.Sympos.Pure Math.70, Amer.Math.Soc., Providence, RI. 70. 297-333 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Tamagawa: "On the tame fundamental groups of curves over algebraically closed fields of characteristic > 0"MSRI Publications.. 41. 47-105 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Tamagawa: "Unramified Skolem problems and unramified arithmetic Bertini theorems in positive characteristic"Documenta Math.Extra Volume : Kazuya Kato's Fiftieth Birthday. Extra Volume. 789-831 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Tamagawa: "Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental groups"J.Algebraic Geom.. (to appear in).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Mochizuki: "A survey of the Hodge-Arakelov theory of Elliptic curves I"Proceedings of Symposia in Pure Mathematics. 70. 533-569 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Mochizuki: "A survey of the Hodge-Arakelov theory of Elliptic curves II"Advanced Studies in Pure Mathematics. 36. 81-114 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Mochizuki: "The absolute anabelian geometry of hyperbolic curves"Galois Theory and Modular Forms, Kluwer. 77-122 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Morita: "Structure of the mapping class group and symplectic representation theory"l'Enseignement Math.Monographs. 38. 577-596 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Morita: "Generators for the tautological algebra of the moduli space of curves"Topology. 42. 787-819 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Takahashi: "Local and relative Gromov-Witten invariants of the projective plane"Manuscripta Math.. 111(4). 413-426 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] D.Kotschick: "Signatures of foliated surface bundles and the symplectomorphism groups of surfaces"Topology. (to appear in).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneko: "Hypergeometric modular forms and supersingular elliptic curves"CRM Proceedings and Lecture Notes. Vol.30. 79-83 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneko: "On modular forms arising from a differential equation of hypergeometric type"The Ramanujan J.. vol.7. 145-164 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneko: "Quasimodular forms as solutions to a differential equation of hypergeometric type"Galois Theory and Modular Forms, Kluwer. 329-336 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneko: "On the local factor of the zeta function of quadratic orders"the proceedings of the international conference Zeta functions, Topology and Quantum Physics 2003. (to appear). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneko: "On multiple L-values"J.Math.Soc.Japan.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Taguchi: "Induction formula for the Artin conductors of mod l Galois representations"Proc.A.M.S.. 130. 2865-2869 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Taguchi: "On potentially abelian geometric representations"The Ramanujan Journal. 7. 477-483 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Taguchi: "Refinement of Tate's discriminant bound and non-existence theorems for mod p Galois representations"Documenta Math.Extra Volume : Kazuya Kato's Fiftieth Birthday. Extra Volume. 641-654 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Tsuzuki: "Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals"Duke Math.J.. 111. 385-418 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Tsuzuki: "On base change theorem and coherence in rigid cohomology"Documenta Math.Extra Volume Kazuya Kato's Fiftieth Birthday. Extra Volume. 891-918 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Morita: "Piecewise C^2 perturbation of Lasota-Yorke maps and their ergodic properties"Osaka J.Math.. 40(1). 207-233 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Morita: "Construction of K-stable foliations for two-dimensional dispersing billiards without eclipse"J.Math.Soc.Japan. 56(3). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Hain: "Weighted completion of Galois groups and Galois actions on the fundamental group of P^1-{0,1,∞}"Compositio Mathematicae. 139-2. 119-167 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Hain: "Tannakian fundamental groups associated to Galois groups"MSRI Publications 41. 41. 183-216 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Hain: "Galois actions on fundamental groups of curves and the cycle C-C^-"Journal of the Institute of Mathematics Jussieu. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Tamagawa: "Ramification of torsion points on curves with ordinary semi-stable Jacobian varieties"Duke Mathematical Journal. 106,No.2. 281-319 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Tamagawa: "Fundamental groups and geometry of curves in positive characteristic"Proc.Sympos.Pure Math.70, Amer.Math.Soc., Providence, RI. 297-333 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Tamagawa: "On the tame fundamental groups of curves over algebraically closed fields of characteristic>0"MSRI Publications. 41. 47-105 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Tamagawa: "Unramified Skolem problems and unramified arithmetic Bertini theorems in positive characteristic"Documenta Math.Extra Volume : Kazuya Kato's Fiftieth Birthday. 789-831

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Tamagawa: "Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental groups"J.Algebraic Geom.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Mochizuki: "A survey of the Hodge-Arakelov theory of Elliptic curves I"Proceedings of Symposia in Pure Mathematics. 70. 533-569 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Mochizuki: "A survey of the Hodge-Arakelov theory of Elliptic curves II"Advanced Studies in Pure Mathematics. 36. 81-114 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Mochizuki: "The absolute anabelian geometry of hyperbolic curves"Galois Theory and Modular Forms (Kluwer). 77-122 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Morita: "Structure of the mapping class group and symplectic representation theory"l'Enseignement Math.Monographs. 38. 577-596 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Morita: "Generators for the tautological algebra of the moduli space of curves"Topology. 42. 787-819 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Takahashi: "Local and relative Gromov-Witten invariants of the projective plane"Manuscripta Math. 111(4). 413-426 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] D.Kotschick: "Signatures of foliated surface bundles and the symplectomorphism groups of surfaces"Topology. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kaneko: "Hypergeometric modular forms and supersingular elliptic curves"CRM Proceedings and Lecture Notes. vol.30. 79-83 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kaneko: "On modular forms arising from a differential equation of hypergeometric type"The Ramanujan J.. vol.7. 145-164 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kaneko: "Quasimodular forms as solutions to a differential equation of hypergeometric type"Galois Theory and Modular Forms (Kluwer). 329-336 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kaneko: "On the local factor of the zeta function of quadratic orders"the proceedings of the international conference "Zeta functions, Topology and Quantum Physics 2003". (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kaneko: "On multiple L-values"J.Math.Soc.Japan. (to appea).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Taguchi: "Induction formula for the Actin conductors of mod l Galois representations"Proc.A.M.S. 130. 2865-2869 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Taguchi: "On potentially abelian geometric representations"The Ramanujan Journal. 7. 477-483 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Taguchi: "Refinement of Tate's discriminant bound and non-existence theorems for mod p Galois representations"Documenta Math.Extra Volume : Kazuya Kato's Fiftieth Birthday. 641-654 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Tsuzuki: "Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals"Duke Math.J.. 111. 385-418 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Tsuzuki: "On base change theorem and coherence in rigid cohomology"Documenta Math.Extra Volume : Kazuya Kato's Fiftieth Birthday. 891-918 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Morita: "Piecewise C^2 perturbation of Lasota-Yorke maps and their ergodic properties"Osaka J.Math.. 40(1). 207-233 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Morita: "Construction of K-stable foliations for two-dimensionaldispersing billiards without eclipse"J.Math.Soc.Japan. 56(3)(to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi