• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Mapping Class Group of Surfaces and Geometry of Moduli Spaces

Research Project

Project/Area Number 13440017
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionThe University of Tokyo

Principal Investigator

MORITA Shigeyuki  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (70011674)

Co-Investigator(Kenkyū-buntansha) NAKAMURA Hiroaki  Okayama University, Faculty of Sciences, Professor, 理学部, 教授 (60217883)
KAWAZUMI Nariya  The University of Tokyo, Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (30214646)
FURUTA Mikio  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (50181459)
MURAKAMI Jun  Waseda University, Graduate School of Science and Engineering, Professor, 大学院・理工学研究科, 教授 (90157751)
AKITA Toshiyuki  Hokkaido University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30279252)
Project Period (FY) 2001 – 2003
Keywordsmapping class group / Riemann surface / Floer homotopy type / Grothendieck-teichmuller group / 3-dimensional manifold / Volume conjecture / non-commutitire geometry / 非可換幾何
Research Abstract

In this project, we focussed on the study of the structure of the mapping class group of surfaces (m.c.g. for short) as well as the moduli space of compact Riemann surfaces, together with various problems closely related with this. They include the following thema : cohomology group of m.c.g., the theory of the Floer homotopy types, topological invariants based on gauge theory, construction of the harmonic Magnus expansion of m.c.g., structure of the Grothendieck-Teichm\"uller group, the volume conjecture, non-commutative geometry in dimensions 3,4, finite subgroups of m.c.g., the Jones representation of m.c.g., relation between m.c.g. with 4-dimensional topology. From the interactions of these thema, we found new directions of research such as the relation between the geometry of m.c.g. and the symplectic topology as well as the comparaison between m.c.g. and the outer automorphism group of free groups.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] MORITA, Shigeyuki: "Generators for the tautological algebra of the moduli space of curves"Topology. 42. 787-819 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] FURUTA, Mikio (with S.BAUER): "A stable cohomotopy refinement of Seiberg-Witten invariants I"Invent.Math.. 155. 1-19 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] KAWAZUMI, Nariya: "Weierstrass points and the Morita-Mumford classes on hyperelliptic mapping class groups"Topology Appl.. 125. 363-383 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] NAKAMURA, Hiroki (with H.TSUNOGAI): "Harmonic and equianharmonic equations in the Grothendieck-Teichmuller group"Forum Mathematicum. 15. 877-892 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] MURAKAMI, Jun (with M.YANO): "On the volume of a hyperbolic and spherical tetrahedron"Comm.Anal.Geom.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeyuki, MORITA: "Generators for the Tautological algebra of the moduli space of curves"Topology. 42. 787-19 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mikio, FURUTA, S.BAUER: "A stable cohomotopy refinement of Seiberg-Witten invariant I"Invent.Math. 155. 1-19 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nariya, KAWAZUMI: "Weierstrass points and the Morita-Numford classes on hyperelliptic mapping class groups"Topology Appl.. 125. 363-383 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroaki, NAKAMURA, H.TSUNOGAI: "Harmonic and equivanharmonic equations in the Grothendieck -Teichmuller group"Forum Mathematicum. 15. 877-892 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jun, MURAKAMI, M.YANO: "On the bolime of a hyperbolic and sphericaltetrahedron"Comm.Anal.Geom.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi