• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

The flag variety of elliptic Lie algebra and elliptic primitive automorphic forms

Research Project

Project/Area Number 13440021
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

SAITO Kyoji  SAITO,Kyoji, 数理解析研究所, 教授 (20012445)

Co-Investigator(Kenkyū-buntansha) TAKAHASHI Atsushi  Research Institute for Mathematical Sciences, Research Associates, 数理解析研究所, 助手 (50314290)
MORI Shigehumi  Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (00093328)
KASHIWARA Masaki  Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (60027381)
TERAO Hiroaki  Tokyo Metropolitan University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90119058)
OKA Matsuo  Tokyo Metropolitan University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40011697)
Project Period (FY) 2001 – 2003
Keywordselliptic root system / braid group / primitive form / flat structure / semi-algebraic geometry / reflection group / elliptic Lie algebra / highest weight表現
Research Abstract

The main purpose of the present research program is to describe the period map associated to an integral of a primitive form in terms of Lie theory.
I. Subject related to elliptic Lie algebra and elliptic Lie groups.
1. The construction of the highest weight representation theory for elliptic algebras: even though elliptic algebras are not Kac-Moody algebras, by replacing the Cartan subalgebra by a Heisenberg algebra, we can construct the infinite dimensional highest weight representation. Since the radical is infinite dimensional and create a non-commutative algebra, we develop a new, concept, called the block algebra.
2. Bruhat-Tits decomposition of elliptic Lie groups: owing to the above 1., we know that there are ample representations, and we can introduce the elliptic group by the inverse limit of integrable representations. The normalizer of its maximal torus is an extension by the elliptic Weyl group by the torus. Even though the elliptic Weyl group is not a Coxeter group, we show … More for the elliptic Lie group admits the Bruhat-Tits decomposition.
3.The Fourier coefficients of the eta-products attached to the characteristic polynomial of the elliptic Coxeter element are non-negative if and only if the corresponding Weyl group invariant ring admit the flat structure, that is: the cases D^<(1,1)>_4, E^<(1,1)>_6, E^<(1,1)>_7 and E^<(1,1)>_8.
II. Subject related to classical finite root systems.
1. The flat structure on finite reflection groups (reconstruction of the theory, Hodge filtration, Fourier transformation and the uniformization equation (Gauss-Manin connection), the relation with the Frobenius manifold structure, special solutions by means of periodd integrals of the primitive form for odd dimensional fibration, the the monodromy group in the symplectic group, a conjecture on the period domain, a conjecture on Eisenstein series and on discriminant forms, a conjecture on the power root of the discriminant form).
2. Construction of new theory: odd Root systems, Period map of type D_4.
3. The relationship between the topology of the complexified orbit space and the semi-algebraic geometry of real orbit space of a finite reflection group (presentation of braid group, K(π,1)-space, twisted real structure, connected components of the complement of twisted real discriminants loci, a relation with the regular eigenvector of the Coxeter element, the characteristic variety, bifurcation set, Linearization theorem). Less

  • Research Products

    (33 results)

All Other

All Publications (33 results)

  • [Publications] K.Saito: "Uniformization of the orbifold of a finite reflection group"Proceedings related to the activity on Frobenius maniforlds, quantum cohomology and singularities, Max Planck Institute for Math.Bonn, July 2002.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Saito: "Non-negativity of Fourier coefficients of Eta-products"Proceedings of 2nd conference on automorphic forms and related subject, Careac, Feb.2003.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Saito: "Polyhedra dual to Weyl chamber decomposition"(to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kashiwara, T.Monteiro, P.Schapira: "Truncated microsupport and holomorphic solutions of D-Modules"Ann.Scient.Ec.Norm.Sup., 4^e serie. 36. 583-599 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kashiwara: "Realizations of Crystals, Combinatorial and geometric representaion theory : an international conference on combinatorial and geometric representation theory"Contemp.Math.. 325. 133-139 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kashiwara: "T-structures on the derived categories of holonomic D-modules and coherent O-modules"math.AG/0302086.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Mori, V.Alexeev: "Bounding singular surfaces of general type in "Algebra, Arithmetic and Geometry with Applications" ed. by Christensen et al."Springer-Verlag. 143-174 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Mori, N.Saito: "Fano threefolds with wild conic bundle structures"Proc. Japan Acad.Ser.A. 79. 111-113 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A Takahashi: "tt^* geometry of rank two"Internat.Math.Res.Notices. 22. 1099-1114 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Oka: "Alexander Polynomial of Sextics"J.Knot Theory Ramifications. 12. 619-636 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Oka: "Geometry of Reduced Sextics of Torus Type"Tokyo J.Math.. 26. 301-327 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Oka, D.T.Pho: "Classification of Sextics of Torus Type"Tokyo J.Math.. 25. 399-433 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Oka: "Elliptic curves from sextics"J.Math.Soc.Japan. 54. 349-371 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Terao: "Multiderivations of Coxeter arrangements"Invent.Math.. 148. 659-674 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Terao, H.Horiuchi: "The Poincare series of the algebra of rational functions which are regular outside hyperplanes"J. of Algebra. 266. 169-179 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Terao: "The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements"arXiv: math.CO/0205058. (preprint). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aoki: "The Graded Ring of Hermitian Modular Forms of Degree 2"Abh.Math.Sem.Univ.Hamburg. 72. 21-34 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Saito: "Uniformization of the orbifold of a finite reflection group"Proceedings related to the activity on Frobenius manifolds, quantum cohomology and singularities, Max Planck Institute for Math. Bonny. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Saito: "Non-negativity of Fourier coefficients of Eta-products"Proceedings of 2nd conference on automorphic forms and related subject, Careac. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Saito: "Polyhedra dual to Weyl chamber decomposition"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kashiwara, T.Monteiro, P: "Schapira, Truncated microsupport and holomorphic solutions of D-Modules"Ann. Sci. Ec. Norm. Sup. (4) 36. 583-599 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kashiwara: "Realizations of Crystals, Combinatorial and geometric representaion theory: an international conference on combinatorial and geometric representation theory"Contemp. Math. 325. 133-139 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kashiwara: "T-structures on the derived categories of holonomic D-modules and coherent 0-modules"math.AG. 0302086.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Mori, V.: "Alexeev, Bounding singular surfaces of general type in "Algebra, Arithmetic and Geometry with Applications" ed. by Christensen et al."Springer-Verlag. 143-174 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Mori, N.Saito: "Fano threefolds with wild conic bundle struttures"Proc. Japan Acad., Ser. A. 79. 111-113 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Takahashi: "tt^* geometry of rank two"Internat. Math. Res. Notices. 22. 1099-1114 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Oka: "Alexander Polynomial of Sextics"J. Knot Theory Ramifications. 12. 619-663 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.O.ka: "Geometry of Reduced Sextics of Torus Type"Tokyo J. Math. 26. 301-327 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Oka, D.T.Pho: "Classification of Sextics of Torus Type"Tokyo J. Math. 25. 399-433 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Oka: "Elliptic curves from sextics"J. Math. Soc. Japan. 54. 349-371 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Terao: "Multiderivations of Coxeter arrangements"Invent. Math. 148. 659-674 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Terao, H.Horiuchi: "The Poincare series of the algebra of rational functions which are regular outside hyperplanes"J. Algebra. 266. 169-179 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Aoki: "The Graded Ring of Hermitian Modular Forms of Degree 2"Abh. Math. Sem. Univ. Hamburg. 72. 21-34 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi