• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Comprehensive Study of Stable Bundles on Calabi-Yau Manifolds

Research Project

Project/Area Number 13640035
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

NAKASHIMA Tohru  Tokyo Metropolitan University Graduate School of Science, Associate Professor, 理学研究科, 助教授 (20244410)

Co-Investigator(Kenkyū-buntansha) ITO Yukari  Tokyo Metropolitan University Graduate School of Science, Assistant, 理学研究科, 助手 (70285089)
TOKUNAGA Hiro-o  Tokyo Metropolitan University Graduate School of Science, Associate Professor, 理学研究科, 助教授 (30211395)
GUEST Martin  Tokyo Metropolitan University Graduate School of Science, Professor, 理学研究科, 教授 (10295470)
TAKEDA Yuichiro  Kyushu University Graduate School of Science, Associate Professor, 大学院・数理学研究院, 助教授 (30264584)
Project Period (FY) 2001 – 2002
KeywordsCalabi-Yau manifold / stable vector bundle / moduli space
Research Abstract

In this research project we planned to solve the existence problem of stable bundles on Calabi-Yau manifolds and to clarify the geometric structure of their moduli spaces. We obtained the following results concerning these subjects.
As to the existence problem, we proved that the extension sheaf of two stable sheaves is again stable, under certain minimality assumption on their first Chern class. As a result, one may construct stable sheaves inductively from sheaves of lower rank. In particular, the method yields stable bundles by means of elementary transformation from globally generated line bundles on a divisor. Until recently, methods of explicit construction of stable bundles has been known only for elliptic Calabi-Yau manifolds, while our work enables us to find stable bundles on arbitrary Calabi-Yau manifolds in principle.
Concerning the geometry of moduli space, we determined their birational structure in many cases. More explicity, we proved that the reflection functor defines an isomorphism between the Brill-Noether loci of the moduli spaces with different Mukai vectors (the Brill-Noether duality), which is a higher dimensional generalization of the result due to Markman-Yoshioka in the case of K3 surface. Exploiting the Brill-Noether duality, one deduces that moduli spaces have a component which is birational to the Grassmann bundle over moduli space of sheaves of lower rank. Our method applies to other varieties which are not necessarily Calabi-Yau. For example, we determined the birational structure of the moduli space of stable sheaves on certain threefolds with Del-Pezzo fibrations.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Tohru Nakashima: "Positivity of the Schur-Weyl invariants of projective varieties"Abhandlungen ans den Mathematischen Seminar der Universitat Hamburg. 72. 293-296 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tohru Nakashima: "Reflection of Sheaves on a Calabi-Yau variety"Asian Journal of Mathematics. 6. 567-578 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tohru Nakashima: "Moduli Spaces of Stable Bundles on K3 Fibered Calabi-Yau Threefolds"Communications in Contemporary Mathematics. 5. 119-226 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tohru Nakashima: "Stable rank two bundles on Del-Pezzo tibrations of degree 1 or 2"Archir der Mathematik. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Martin A.Guest: "Quantum cohomology and the periodic Toda lattice"Communications in Mathematical Physics. 217. 475-487 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiro-o Tokunaga: "Galois covers for S_4 and A_4 and their applications"Osaka Journal of Mathematics. 39. 621-645 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tohru, Nakashima: "Positivity of the Schur-Weyl invariants of projective varieties"Abhandlungen aus dem Mathmatischen Seminar der Universitat Hamburg. 72. 293-296 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tohru, Nakashima: "Reflection of sheaves on a Calabi-Yau variety"Asian Journal of Mathematics. 6. 567-578 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tohru, Nakashima: "Moduli spaces of stable bundles on K3 fibered Calabi-Yau threefolds"Communications in Contemporary Mathematics. 5. 119-226 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tohru, Nakashima: "Stable rank two bundles on Del-Pezzo fibrations of degree 1 or 2"Archiv der Mathematik. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Martin, A. Guest: "Quantum cohomology and the periodic Toda lattice"Communications in Mathematical Physics. 217. 475-487 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiro-o, Tokunaga: "Galois covers for S_4 and A_4 and their applications"Osaka Journal of Mathematics. 39. 621-645 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi