• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Geometry of Gauss Mapping

Research Project

Project/Area Number 13640073
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionShimane University

Principal Investigator

KIMURA Makoto  Shimane University, Dep. Of Sci.&Eng, Prof., 総合理工学部, 教授 (30186332)

Co-Investigator(Kenkyū-buntansha) MAEDA Sadahiro  Shimane University, Dep. Of Sci.&Eng, Prof., 総合理工学部, 教授 (40181581)
HATTORI Yasunao  Shimane University, Dep. Of Sci.&Eng, Prof., 総合理工学部, 教授 (20144553)
Project Period (FY) 2001 – 2002
KeywordsDifferential Geometry / Gauss map / Minimal submanifolds / Special Lagrangian
Research Abstract

First we investigated submanifolds M with degenerate Gauss mapping in spheres S^n. The Gauss map of M to real Grassmannian is constant if and only if M is totally geodesic in S^n, so the rank of the Gauss map measures the degree of how shape of M is near to the totally geodesic one. On the other hand, each leaf of the foliation given by the kernel of the differential of the Gauss map. So essential problem is that for a submanifold M in S^n foliated by great spheres, find the condition of which along each leaf the Gauss map is constant. In this research, we give general method to construct submanifolds foliated by great spheres in S^n by using the canonical sphere bundle over real Grassmanniam. Moreover, for either a circle bundle over complex submanifolds in complex quadrics or the twistor space over quaternionic symmetric spaces, we showed that along each fiber of the sphere bundles over submanifolds, the Gauss map is constant, and their twisted normal cones are special Lagrangian in complex Euclidean space.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] G.Ishikawa, M.Kimura, R.Miyaoka: "Submanifolds with degenerate Gauss mapping in spheres"Adv.Studies in Pure Math.. 37. 115-149 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] U-Hang Ki, M.Kimura, S.Maeda: "Geometry of holomorphic distributions of real hypersurfaces in a complex projective space"Czec Math. J.. 51. 197-204 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] B.Y.Chen, S.Maeda: "Hopf hypersurfaces with constant principal curvatures in complex projective or hyperbolic spaces"Tokyo J. Math.. 24. 133-152 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Suizu, S.Maeda, T.Adachi: "Characterization of totally geocdesic Kuhler immersions"Hokkaido Math. J.. 31. 629-641 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y Hattori, K.Hashimoto: "On the Nagata's star index *_K(X)"Topology and its appl.. 122. 201-204 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G,Ishikawa., M,Kimura., R,Miyaoka.: "Submanifolds with degenerate Gauss mappings is spheres"Adv. Studies in Pure Math.. 37. 115-149 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] U-Hang Ki., M,Kimura., S,Maeda.: "Geometry of holomorphic distributions of real hypersurfaces in a complex projective space"Czec. Math. J.. 51. 197-204 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] B.Y.Chen., S,Maeda.: "Hopf hypersurfaces with constant principal curvatures in complex projective spaces"Tokyo J. Math.. 24. 133-152 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K,Suizu., S,Maeda., T,Adachi.: "Characterization of totally geodesic Ka^^<..>hler immersions"Hokkaido Math. J.. 31. 629-641 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Hattori., K,Hashimoto.: "On the Nagata's star index *_k(X)"Topology and its Appl.. 122. 201-204 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi