• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Poincare-Bendixson type theoreom for holomorphic foliation of codimension one and its application

Research Project

Project/Area Number 13640092
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionRyukoku University

Principal Investigator

ITO Toshikazu  Ryukoku Univ., Faculty of Economics, Professor, 経済学部, 教授 (60110178)

Co-Investigator(Kenkyū-buntansha) KOKUBO Hiroe (OKA Hiroe)  Ryukoku Univ., Faculty of Sci.and Tech., Professor, 理工学部, 教授 (20215221)
YOTSUTANI Shoji  Ryukoku Univ., Faculty of Sci.and Tech., Professor, 理工学部, 教授 (60128361)
MATSUMOTO Waichiro  Ryukoku Univ., Faculty of Sci.and Tech., Professor, 理工学部, 教授 (40093314)
YAMAGISHI Yoshikazu  Ryukoku Univ., Faculty of Sci.and Tech., Assistant, 理工学部, 助手 (40247820)
MORITA Yoshihisa  Ryukoku Univ., Faculty of Sci.and Tech., Professor, 理工学部, 教授 (10192783)
Project Period (FY) 2001 – 2003
Keywordsholomorphic one form / holomorphic foliation / Poincare-Bendixson theorem / Poincare-Hopf theorem / holomorphic vector field / singularity / transversality
Research Abstract

The aim of this project is an extension of "Poincare-Bendixson type theorem for holomorphic vector field" proved by A.Douady and T.Ito to a holomorphic foliation of codimension one. We will investigate the following question :
Question Let F be a holomorphic foliatiop of codimension one defined in a neighborhood of a closed disc <B^<2n>(R)>^^^-={Z∈C^n||Z|【less than or equal】R}⊂C^n. If F is transverse to S^<2n-1>(R)=∂<B^<2n>(R)>^^^-, then what can be said about F?
We got the following results :
(1)There is no holomorphic foliation F such that F is transverse to S^<4m+1>(R)⊂C^<2m+1>.
(2)If F is defined by a homogeneous integrable one form ω, F is not transverse to S^<2n-1>(R), n【greater than or equal】3.
(3)Let F be defined in a neighborhood U of a closed polydisk <Δ^n(1)>^^^-⊂C^n. If F is transverse a boundary of <Δ^n(1)>^^^-, then F is ψ^*(L), where L is a hyperbolic linear logarithmic foliation on C^n and a map ψ:U→C^n is holomorphic.
(4)Let ω be a holomorphic one form defined in a neighborhood of <B^<2n>(R)>^^^-⊂C^n. If Ker(ω) is transverse to S^<2n-1>(R), then we have a Poincare-Hopf type theorem for ω.
(5)If Ker(ω) is transverse to S^<2n-1>(R), then there is only one singular point of ω inside B^<2n>(R) and this point is simple.

  • Research Products

    (52 results)

All Other

All Publications (52 results)

  • [Publications] T.Ito: "An application of the Cayley number to a holomorphic foliation on C^4"龍谷紀要. 24-1. 17-22 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ito, B.Scardua: "On holomorphic one-forms transverse to closed hypersurfaces"Annals. of Brazilian Academy of Sciences. 75-3. 265-269 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ito, B.Scardua: "Holomorphic foliations of codimension one transverse to polydiscs"J.fur die reine und angew.Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ito, B.Scardua: "A Poincare-Hopf type theorem for holomorphic one-forms"Topology. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.Matsumoto, M.Murai, T.Nagase: "On the Cauchy-Kowalevskaya theorem of Nagumo type for systems"Hyperbolic differential operators and related problems. 145-156 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.Matsumoto, M.Murai, S.Yotsutani: "By which kind of sound, can one hear the shape of drum?"数理解析研究所講究録「波動現象と漸近解析」. 1315. 156-175 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kabeya, E.Yanagida, S.Yotsutani: "Global structure of solutions for equations of Brezis-Nirenberg type on the unit ball"Proc.Roy.Soc.Edinburgh Sect.A. 131. 647-665 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E.Yanagida, S.Yotsutani: "A unified approach to the structure of radial solutions for semilinear elliptic problems"Japan J.Indust.Appl.Math.. 18. 503-519 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Yotsutani: "Canonical form related with radial solutions of semilinear elliptic equations and its applications"Taiwanese J.Math.. 5. 507-517 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Morishita, E.Yanagida, S.Yotsutani: "Structural change of solutions for scalar curvature equation"Differential Integral Equations. 14. 273-288 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kabeya, E.Yanagida, S.Yotsutani: "Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems"Comm.Pure Appl.Anal.. 1. 85-102 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Myogahara, E.Yanagida, S.Yotsutani: "Structure of positive radial solutions for semilinear Dirichlet Problems on a ball"Funkcial.Ekvac.. 45. 1-21 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Ikeda, K.Kondo, H.Okamoto, S.Yotsutani: "On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows"Communication of Pure and Applied Analysis. 3-3. 381-390 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E.Yanagida, S.Yotsutani: "Recent Topics on Nonlinear Partial Differential Equqtions : Structure of Radial Solutions for Semilinear Elliptic Equations"Amer.Math.Soc.Transl.. 2-211. 121-137 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Lou, W.-M.Ni, S.Yotsutani: "On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion"Discrete and Continuous Dynamical Systems. 10-1. 435-458 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Oka: "Conley index theory for slow-fast systems : multi-dimensional slow manifold"Proceedings of Equadiff 2003. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Morita, J.Dockery, M.Pernarowski: "Symmetry Breaking Homoclinic Bifurcations in Diffusively Coupled Equations"J.Dynamics and Differential Equations. 13. 613-649 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Jimbo, Y.Morita: "Notes on the Limit Equation of Vortex Motion for the Ginzburg-Landau Equation with Neumann Condition"Japan J.Indust.Appl.Math.. 18. 483-501 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Jimbo, Y.Morita: "Vortex Dynamics for the Ginzburg-Landau Equation with Neumann Condition"Methods Appl.Anal.. 8. 451-478 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Morita: "Some Dynamical Aspects of Vortices in the Ginzburg-Landau Equation"数理解析研究所講究録. 1249. 47-51 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Jimbo, Y.Morita: "Ginzburg-Landau Equation with Magnetic Effect in a Thin Domain"Calc.Var.Partial Differential Equations. 15. 325-352 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Fukano, Y.Morita, H.Ninomiya: "Some entire solutions of the Allen-Cahn equation"Taiwanese J.Math.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Morita: "Stable Solutions to the Ginzburg-Landau Equation with Magnetic Effect in a Thin Domain"Japan J.Indust.Appl.Math.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.-S.Guo, Y.Morita: "Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations"Discrete and Continuous Dynamical Systems. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Yamagishi: "Quadratically convergent initial values to a double root in Newton's method of two variables"Progress in Analysis, Proceedings of the 3rd ISAAC Congress. 563-569 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Yamagishi: "On the local convergence of Newton's method to a multiple root"Journal of the Mathematical Society of Japan. 55-4. 897-908 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ito: "An application of the Cayley number to a holomorphic foliation on C^4"Ryukoku Kiyou. 24-1. 17-22 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ito, B.Scardua: "On holomorpahic one-forms transverse to closed hypersurfaces"Annals.of Brazilian Academy of Sciences. 75-3. 265-269 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ito, B.Scardua: "Holomorphic foliations of codimension one transverse to polydiscs"J.fur die reine und angew.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ito, B.Scardua: "A Poincare-Hopf type theorem for holomorphic one-forms"Topology. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W.Matsumoto, M.Murai, T.Nagase: "On the Cauchy-Kowalevskaya theorem of Nagumo type for systems"Hyperbolic differetitial operators and related problems. 145-156 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W.Matsumoto, M.Murai, S.Yotsutani: "By which kind of sound, can one hear the shape of drum?"RIMS. 1315. 156-175 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kabeya, E.Yanagida, S.Yotsutani: "Global structure of solutions for equations of Brezis-Nirenberg type on the unit ball"Proc.Roy.Soc.Edinburgh Sect.A. 131. 647-665 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E.Yanagida, S.Yotsutani: "A unified approach to the structure of radial solutions for semilinear elliptic problems"Japan J.Indust.Appl.Math.. 18. 503-519 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Yotsutani: "Canonical form related with radial solutions of semilinear elliptic equations and its applications"Taiwanese J.Math.. 5. 507-517 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Morishita, E.Yanagida, S.Yotsutani: "Structural change of solutions for scalar curvature equation"Differential Integral Equations. 14. 273-288 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kabeya, B.Yanagida, S.Yotsutani: "Canonical foarms and structure theorems for radial solutions to semi-linear elliptic problems"Comm.Pure Appl.Anal.. 1. 85-102 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Myogahara, B.Yanagida, S.Yotsutani: "Structure of positive radial solutions for semilinear Dirichlet Problems"Funkcial.Ekvac.. 45. 1-21 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Ikeda, K.Kondo, H.Okamoto, S.Yotsutani: "On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows"Communication on Pure and Applied Analysis. 3-3. 381-390 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E.Yanagida, S.Yotsutani: "Recent Topics on Nonlinear Partial Differential Equations : Structure of Radial Solutions for Semilinear Elliptic Equations"Amer.Math.Soc.Transl.. Series2-211. 121-137 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Lou, W.-M.Ni, S.Yotsutani: "On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion"Discrete and Continuous Dynamical Systems. 10-1. 435-458 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Oka: "Conley index theory for slow-fast systems : multi-dimensional slow manifold"Proceedings of Equadiff 2003. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Morita, J.Dockery, M.Pernarowski: "Symmetry Breaking Homoclinic Bifurcations in Diffusively Coupled Equations"J.Dynamics and Differential Equations. 13. 613-649 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Jimbo, Y.Morita: "Notes on the Limit Equation of Vortex Motion for the Ginzburg-Landau Equation with Neumann Condition"Japan J.Indust.Appl.Math.. 18. 483-501 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Jimbo, Y.Morita: "Vortex Dynamics for Ginzburg-Landau Equation with Neumann Condition"Methods Appl.Anal.. 8. 451-478 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Morita: "Some Dynamical Aspects of Vortices in the Ginzburg-Landau Equation"RIMS. 1249. 47-51 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Jimbo, Y.Morita: "Ginzburg-Landau Equation with Magnetic Effect in a Thin Domain"Calc.Var.Partial Differential Equations. 15. 325-352 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Fukano, Y.Morita, H.Ninomiya: "Some entire solutions of the Allen-Cahn equation"Taiwanese J.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Morita: "Stable Solutions to the Ginzburg-Landau Equation with Magnetic Effect in a Thin Domain"Japan J.Indust.Appl.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.-S.Guo, Y.Morita: "Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations"Discrete and Continuous Dynamical Systems. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Yamagishi: "Quadratically convergent initial values to a double root in Newton's method of two variables"Progress in Analysis, Proceedings of the 3rd ISAAC Congress(2003). 563-569 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Yamagishi: "On the local convergence of Newton's method to a multiple root"Journal of the Mathematical Society of Japan. 55-4. 897-908 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi