• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Continuation and uniqueness for solutions of partial differential equations

Research Project

Project/Area Number 13640166
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionNagoya University

Principal Investigator

SUZUKI Noriaki  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (50154563)

Co-Investigator(Kenkyū-buntansha) ISHIGE Kazuhiro  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (90272020)
MIYAKE Masatake  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (70019496)
Project Period (FY) 2001 – 2002
Keywordsharmonic function / heat equation / Dirichlet problem / mean value theorem / heat ball
Research Abstract

We study the continuation and uniqueness for solutions of partial differential equations, by using potential theory. We have the following results.
1. In 2001, we showed a characterization of heat balls by mean value property for temperatures in Proc.Amer.Math.Soc. Then a generalization of it was obtained and published in Suriken Kokyuroku. Based on these results, we start to study the existence of mean value density for temperatures. In particular, a relation with the Dirichlet regularity and the existence of a bounded density or a density with positive infimum are discussed. The development of them is our new object of study.
2. We discueesd an extension of harmonic function on a domain. In the 2 dimensional case our problem is completely solved, but in higher dimensional case there are some problems.
3. We study a polynomial solution of the Dirichlet problem on a domain for the heat equation. In case that a domain is determined by a polynomial with degree less than 3, we obtain a necessary and sufficient condition under which the above problem is solvable. This result is publised in Bull.Aichi Inst.Tech. In case the degree is more than 4 we find that this problem is closely related with an assertion concerning to the zero points of Hermite polynomials.
4. In the connection of uniqueness of a solution of α parabolic operators on a half space, we study the Huygens property and the duality of parabolic Bergman spaces. Our spaces contain the usual harmonic and heat Bergman spaces.

Research Products

(8 results)

All Other

All Publications (8 results)

  • [Publications] N.Suzuki: "A characterization of heat balls by a mean value property for temperatures"Proc. Amer. Math. Soc.,. 129. 2709-2713 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Nakamura: "Polynomial solutions to foundary-value problems of the heat equation"Bull. Aichi. Inst. Tech. 37. 33-38 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Suzuki: "Mean value property for temperatures on an annulus"数理解析研究所講究録. 1293. 168-174 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 鈴木紀明: "数学基礎・複素関数"培風館. 197 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Suzuki: "A characterization of heat balls by a mean value property for temperatures"Proc.Amer.Math.Soc.. 129. 2709-2713 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G.Nakamura: "Polynomial solutions to boundary-value problems of the heat equation"Bull.Aichi.Inst.Tech.. 37. 33-38 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Suzuki: "Mean value property for temperatures on an annlus domain"Suriken-Kokyuroku. 1293. 168-174 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Suzuki: "Complex function Theory"Baihukan. 197 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi